Möbius disjointness for models of an ergodic system and beyond
Autor: | Joanna Kułaga-Przymus, El Houcein El Abdalaoui, Mariusz Lemańczyk, Thierry de la Rue |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques Raphaël Salem (LMRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Marseille (I2M), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Faculty of Mathematics and Computer Science, Nicolaus Copernicus University [Toruń], Research supported by the special program in the framework of the Jean Morlet semester'Ergodic Theory and Dynamical Systems in their Interactions with Arithmetic and Combina-torics', and by Narodowe Centrum Nauki grant UMO-2014/15/B/ST1/03736., Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Mathematics::Dynamical Systems Mathematics - Number Theory General Mathematics Liouville function [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] 010102 general mathematics Topological entropy Disjoint sets Unipotent Physics::Classical Physics Dynamical system Stationary ergodic process 01 natural sciences [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] 010101 applied mathematics Combinatorics Ergodic theory Mathematics - Dynamical Systems 0101 mathematics Entropy (arrow of time) Mathematics |
Zdroj: | Israël Journal of Mathematics Israël Journal of Mathematics, Hebrew University Magnes Press, 2018, 228 (2), pp.707-751. ⟨10.1007/s11856-018-1784-z⟩ Israel Journal of Mathematics Israel Journal of Mathematics, 2018, 228 (2), pp.707-751. ⟨10.1007/s11856-018-1784-z⟩ |
ISSN: | 1565-8511 0021-2172 |
DOI: | 10.1007/s11856-018-1784-z |
Popis: | Given a topological dynamical system $(X,T)$ and an arithmetic function $\boldsymbol{u}\colon\mathbb{N}\to\mathbb{C}$, we study the strong MOMO property (relatively to $\boldsymbol{u}$) which is a strong version of $\boldsymbol{u}$-disjointness with all observable sequences in $(X,T)$. It is proved that, given an ergodic measure-preserving system $(Z,\mathcal{D},\kappa,R)$, the strong MOMO property (relatively to $\boldsymbol{u}$) of a uniquely ergodic model $(X,T)$ of $R$ yields all other uniquely ergodic models of $R$ to be $\boldsymbol{u}$-disjoint. It follows that all uniquely ergodic models of: ergodic unipotent diffeomorphisms on nilmanifolds, discrete spectrum automorphisms, systems given by some substitutions of constant length (including the classical Thue-Morse and Rudin-Shapiro substitutions), systems determined by Kakutani sequences are M\"obius (and Liouville) disjoint. The validity of Sarnak's conjecture implies the strong MOMO property relatively to $\boldsymbol{\mu}$ in all zero entropy systems, in particular, it makes $\boldsymbol{\mu}$-disjointness uniform. The absence of strong MOMO property in positive entropy systems is discussed and, it is proved that, under the Chowla conjecture, a topological system has the strong MOMO property relatively to the Liouville function if and only if its topological entropy is zero. Comment: 35 pages |
Databáze: | OpenAIRE |
Externí odkaz: |