Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator
Autor: | Travis A. Meyer, William M. Shih, Yonggang Ke, Gaëtan Bellot |
---|---|
Přispěvatelé: | Solaronix, rue de l'Ouriette 129, CH-1170 Aubonne, Switzerland, Institut de Génomique Fonctionnelle (IGF), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Electrophoresis
Green Fluorescent Proteins-metabolism [SDV]Life Sciences [q-bio] Science Green Fluorescent Proteins General Physics and Astronomy Nanotechnology 02 engineering and technology Enhanced green fluorescent protein Biology 010402 general chemistry 01 natural sciences Agar gel Article General Biochemistry Genetics and Molecular Biology DNA-chemistry chemistry.chemical_compound Allosteric Regulation Agar Gel DNA nanotechnology DNA origami A-DNA Electrophoresis Agar Gel Multidisciplinary Extramural Nanostructures-chemistry-ultrastructure DNA General Chemistry 021001 nanoscience & nanotechnology Nanostructures 0104 chemical sciences Restriction enzyme chemistry 0210 nano-technology |
Zdroj: | Nature Communications, Vol 7, Iss 1, Pp 1-8 (2016) Nature Communications Nature Communications, Nature Publishing Group, 2016, 7, pp.10935. ⟨10.1038/ncomms10935⟩ |
ISSN: | 2041-1723 |
DOI: | 10.1038/ncomms10935⟩ |
Popis: | The creation of nanometre-sized structures that exhibit controllable motions and functions is a critical step towards building nanomachines. Recent developments in the field of DNA nanotechnology have begun to address these goals, demonstrating complex static or dynamic nanostructures made of DNA. Here we have designed and constructed a rhombus-shaped DNA origami ‘nanoactuator' that uses mechanical linkages to copy distance changes induced on one half (‘the driver') to be propagated to the other half (‘the mirror'). By combining this nanoactuator with split enhanced green fluorescent protein (eGFP), we have constructed a DNA–protein hybrid nanostructure that demonstrates tunable fluorescent behaviours via long-range allosteric regulation. In addition, the nanoactuator can be used as a sensor that responds to specific stimuli, including changes in buffer composition and the presence of restriction enzymes or specific nucleic acids. The construction of nano-machines requires building nano-scale structures with controllable functions. Here the authors use DNA origami to construct an allosteric actuator which can act as signal propagator and an environmental sensor. |
Databáze: | OpenAIRE |
Externí odkaz: |