Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator

Autor: Travis A. Meyer, William M. Shih, Yonggang Ke, Gaëtan Bellot
Přispěvatelé: Solaronix, rue de l'Ouriette 129, CH-1170 Aubonne, Switzerland, Institut de Génomique Fonctionnelle (IGF), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Nature Communications, Vol 7, Iss 1, Pp 1-8 (2016)
Nature Communications
Nature Communications, Nature Publishing Group, 2016, 7, pp.10935. ⟨10.1038/ncomms10935⟩
ISSN: 2041-1723
DOI: 10.1038/ncomms10935⟩
Popis: The creation of nanometre-sized structures that exhibit controllable motions and functions is a critical step towards building nanomachines. Recent developments in the field of DNA nanotechnology have begun to address these goals, demonstrating complex static or dynamic nanostructures made of DNA. Here we have designed and constructed a rhombus-shaped DNA origami ‘nanoactuator' that uses mechanical linkages to copy distance changes induced on one half (‘the driver') to be propagated to the other half (‘the mirror'). By combining this nanoactuator with split enhanced green fluorescent protein (eGFP), we have constructed a DNA–protein hybrid nanostructure that demonstrates tunable fluorescent behaviours via long-range allosteric regulation. In addition, the nanoactuator can be used as a sensor that responds to specific stimuli, including changes in buffer composition and the presence of restriction enzymes or specific nucleic acids.
The construction of nano-machines requires building nano-scale structures with controllable functions. Here the authors use DNA origami to construct an allosteric actuator which can act as signal propagator and an environmental sensor.
Databáze: OpenAIRE