Lyapunov exponents for binary substitutions of constant length
Autor: | Neil Mañibo |
---|---|
Rok vydání: | 2017 |
Předmět: |
Diffraction
Physics Basis (linear algebra) 010102 general mathematics Mathematical analysis 37A30 37D25 28D20 52C23 Binary number Statistical and Nonlinear Physics Dynamical Systems (math.DS) Lyapunov exponent 010403 inorganic & nuclear chemistry 01 natural sciences 0104 chemical sciences symbols.namesake Fourier transform Aperiodic graph Fourier analysis FOS: Mathematics symbols Mathematics - Dynamical Systems 0101 mathematics Constant (mathematics) Mathematical Physics |
Zdroj: | Journal of Mathematical Physics. 58:113504 |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/1.4993169 |
Popis: | A method of confirming the absence of absolutely continuous diffraction via the positivity of Lyapunov exponents derived from the corresponding Fourier matrices is presented, which provides an approach that is independent of previous results on the basis of Dekking's criterion. This yields a positive result for all constant length substitutions on a binary alphabet which are primitive and aperiodic. 12 pages |
Databáze: | OpenAIRE |
Externí odkaz: |