NSF CSSI proposal: An open source software ecosystem for plasma physics

Autor: Murphy, Nicholas A., Everson, Erik T., Vincena, Stephen, Parashar, Tulasi, Schaffner, David
Jazyk: angličtina
Rok vydání: 2019
Předmět:
ISSN: 1538-3881
DOI: 10.5281/zenodo.3406803
Popis: The research team will lead the development of PlasmaPy and affiliated packages to foster the creation of an open source software ecosystem for plasma physics. The PlasmaPy core package will contain functionality needed by plasma physicists across disciplines, whereas affiliated packages will contain more specialized functionality. At the beginning of the project, the research team will refactor existing code, improve tests, formalize the software architecture, and improve PlasmaPy's base data structures in order to provide a solid foundation for future development. Subsequent code development priorities include a dispersion relation solver for plasma waves and instabilities, the groundwork for a flexible framework for plasma simulation, time series turbulence analysis tools, classes for the analysis of plasma diagnostics, and tools to provide access to atomic and physical data. They will make base data structures compatible with open source packages for data science to enable future data science studies. The research team will actively seek input and feedback from the plasma physics community, and adjust code development priorities based on this feedback. The team will hold workshops each year and actively support new users and contributors to grow PlasmaPy into a self-sustaining project.
This is a revised version of a collaborative frameworks proposal that was submitted to the U.S. National Science Foundation (NSF) Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program (solicitation 19-458) on 2019 April 8 and awarded on 2019 September 7. The revisions from the original proposal include minor corrections for clarity and grammar, reformatting for readability, and the addition of hyperlinks. This document also contains the proposal reviews, panel summary, and requested clarifications from the proposal team. This proposal corresponds to NSF awards 1931388, 1931393, 1931429, and 1931435.
{"references": ["An, X., Bortnik, J., Van Compernolle, B., Decyk, V., & Thorne, R. (2017). Electrostatic and whistler instabilities excited by an electron beam. Physics of Plasmas, 24, 072116, http://dx.doi.org/10.1063/1.4986511", "Astropy Collaboration, Price-Whelan, A. M., Sip\u0151cz, B. M., G\u00fcnther, H. M., Lim, P. L., Crawford, S. M., Conseil, S., Shupe, D. L., Craig, M. W., Dencheva, N., Ginsburg, A., VanderPlas, J. T., Bradley, L. D., P\u00e9rez-Su\u00e1rez, D., de Val-Borro, M., Aldcroft, T. L., Cruz, K. L., Robitaille, T. P., Tollerud, E. J., Ardelean, C., Babej, T., Bach, Y. P., Bachetti, M., Bakanov, A. V., Bamford, S. P., Barentsen, G., Barmby, P., Baumbach, A., Berry, K. L., Biscani, F., Boquien, M., Bostroem, K. A., Bouma, L. G., Brammer, G. B., Bray, E. M., Breytenbach, H., Buddelmeijer, H., Burke, D. J., Calderone, G., Cano Rodr\u00edguez, J. L., Cara, M., Cardoso, J. V. M., Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D'Avella, D., Deil, C., Depagne, \u00c9., Dietrich, J. P., Donath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L. A., Finethy, T., Fox, R. T., Garrison, L. H., Gibbons, S. L. J., Goldstein, D. A., Gommers, R., Greco, J. P., Greenfield, P., Groener, A. M., Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A. J., Hosseinzadeh, G., Hu, L., Hunkeler, J. S., Ivezi\u0107, \u017d., Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N. S., Kerzendorf, W. E., Khvalko, A., King, J., Kirkby, D., Kulkarni, A. M., Kumar, A., Lee, A., Lenz, D., Littlefair, S. P., Ma, Z., Macleod, D. M., Mastropietro, M., McCully, C., Montagnac, S., Morris, B. M., Mueller, M., Mumford, S. J., Muna, D., Murphy, N. A., Nelson, S., Nguyen, G. H., Ninan, J. P., N\u00f6the, M., Ogaz, S., Oh, S., Parejko, J. K., Parley, N., Pascual, S., Patil, R., Patil, A. A., Plunkett, A. L., Prochaska, J. X., Rastogi, T., Reddy Janga, V., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L. E., Sherwood-Taylor, H., Shih, A. Y., Sick, J., Silbiger, M. T., Singanamalla, S., Singer, L. P., Sladen, P. H., Sooley, K. A., Sornarajah, S., Streicher, O., Teuben, P., Thomas, S. W., Tremblay, G. R., Turner, J. E. H., Terr\u00f3n, V., van Kerkwijk, M. H., de la Vega, A., Watkins, L. L., Weaver, B. A., Whitmore, J. B., Woillez, J. & Zabalza, V. (2018). The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package, Astronomical Journal, 156, 123, https://doi.org/10.3847/1538-3881/aabc4f", "Baker, Monya. (2016). 1,500 scientists lift the lid on reproducibility. Nature, 533, 452. https://doi.org/10.1038/533452a", "Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A Fresh Approach to Numerical Computing. SIAM Review, 59, 65, https://doi.org/10.1137/141000671", "Bondarenko, A. S., Schaeffer, D. B., Everson, E. T., Clark, S. E., Lee, B. R., Constantin, C. G, Vincena, S., Van Compernolle, B., Tripathi, S. K. P., Winske, D. & Niemann, C. (2017a). Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma. Physics of Plasmas, 24, 082110, http://dx.doi.org/10.1063/1.4995480", "Bondarenko, A. S., Schaeffer, D. B., Everson, E. T., Clark, S. E., Lee, B. R., Constantin, C. G., Vincena, S., Van Compernolle, B., Tripathi, S. K. P., Winske D., & Niemann, C. (2017b). Collisionless momentum transfer in space and astrophysical explosions. Nature Physics, 13, 573, http://dx.doi.org/10.1038/NPHYS4041", "Bonde, J., Collisionless coupling of a high-beta expansion to an ambient, magnetized plasma. (2018). I. Rayleigh model and scaling, Physics of Plasmas 25, 042109, https://doi.org/10.1063/1.5029301", "Bonde, J., Vincena, S., & Gekelman, W. (2018). Collisionless coupling of a high-beta expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling. Physics of Plasmas, 25, 042110, https://doi.org/10.1063/1.5029302", "Burrell, A. G., Halford, A., Klenzing, J., Stoneback, R. A., Morley, S. K., Annex, A. M., Laundal, K. M., Kellerman, A. C., Stansby, D. & Ma, J. (2018). Snakes on a spaceship\u2014An overview of Python in heliophysics. Journal of Geophysical Research: Space Physics, 123, 10384. https://doi.org/10.1029/2018JA025877", "Chasapis, A., Yang, Y., Matthaeus, W. H., Parashar, T. N., Haggerty, C. C., Burch, J. L., Moore, T. E., Pollock, C. J., Dorelli, J., Gershman, D. J., Torbert, R. B. & Russell, C. T. (2018). Energy conversion and collisionless plasma dissipation channels in the turbulent magnetosheath observed by the Magnetospheric Multiscale Mission. Astrophysical Journal, 862, 32.", "DeHaas, T. & Gekelman, W. (2017). Helicity transformation under the collision and merging of two magnetic flux ropes, Physics of Plasmas. 24, 072108, http://dx.doi.org/10.1063/1.4991413", "Feathers, M. (2005). Working Effectively with Legacy Code.", "Fisher, D. M. & Rogers, B. N. (2017). Two-fluid biasing simulations of the large plasma device. Physics of Plasmas, 24, 022303, http://dx.doi.org/10.1063/1.4975616", "Gary, S. P., Hughes, R. S. & Wang, J. (2016). Whistler turbulence heating of electrons and ions: three-dimensional particle-in-cell simulations. Astrophysical Journal, 816, 102, 2016, https://doi.org/10.3847/0004-637X/816/2/102", "Gekelman, W., DeHaas, T., Pribyl, P., Vincena, S., Van Compernolle, B. & Sydora, R. (2017). Non-local Ohm's law during collisions of magnetic flux ropes. Physics of Plasmas, 24, 070701, http://dx.doi.org/10.1063/1.4990054", "Gekelman, W., DeHaas, T., Pribyl, P., Vincena, S., Van Compernolle, B., Sydora, R., & Tripathi, S. K. P. (2018a). Nonlocal Ohm's Law, Plasma Resistivity & Reconnection During Collisions of Magnetic Flux Ropes. Astrophysical Journal, 853, 1, https://doi.org/10.3847/1538-4357/aa9fec", "Gekelman, W., Tang, S. W., DeHaas, T., Vincena, S., Pribyl, P & Sydora, R. (2018b). Spiky electric & magnetic field structures in flux rope experiments, Proceedings of the National Academy of Sciences, 201721343, https://doi.org/10.1073/pnas.1721343115", "Harihareswara, Sumana. (2017). How to Teach And Include Volunteers who Write Poor Patches, https://www.harihareswara.net/sumana/2017/04/04/0", "Hettrick, Simon (2016), Research Software Sustainability: Report on a Knowledge Exchange Workshop", "Heuer, P. V., Schaeffer, D. B., Knall, E. N., Constantin, C. G., Hofer, L. R., Vincena, S., Tripathi, S. & Niemann, C. (2017). Fast gated imaging of the collisionless interaction of a laser-produced and magnetized ambient plasma, High Energy Density Physics, 22, http://dx.doi.org/10.1016/j.hedp.2016.12.003", "Heuer, P. V., Weidl, M. S., Dorst, R. S., Schaeffer, D. B., Bondarenko, A. S., Tripathi, S. K. P., Van Compernolle, B., Vincena, S., Constantin, C. G., Niemann, C. & Winske, D. (2018). Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma, Physics of Plasmas, 25, 032104, https://doi.org/10.1063/1.5017637", "Huebl, Axel, Lehe, R\u00e9mi, Vay, Jean-Luc, Grote, David P., Sbalzarini, Ivo F., Kuschel, Stephan & Bussmann, Michael. (2017). Open Science with OpenPMD. Zenodo. http://doi.org/10.5281/zenodo.822396", "Hughes, R. S., Gary, S. P., Wang, J. & Parashar, T. N. (2017). Kinetic Alfv\u00e9n Turbulence: Electron and Ion Heating by Particle-in-cell Simulations. Astrophysical Journal Letters, 847, L14.", "Jin, S., Poulos, M. J., Van Compernolle, B. & Morales, G. J. (2019). Plasma flows generated by an annular thermionic cathode in a large magnetized plasma, Physics of Plasmas, 26, 022105, https://doi.org/10.1063/1.5063597", "Karbashewski, S., Sydora, R. D., Van Compernolle, B. & Poulos, M. J. (2018). Driven thermal waves & determination of the thermal conductivity in a magnetized plasma. Phys. Rev. E., 98, 051202, https://link.aps.org/doi/10.1103/PhysRevE.98.051202", "Leonard, Andrew J. (2018). PLEP-0006 \u2013 A New General-Purpose Plasma Object (Version 1). Zenodo. https://doi.org/10.5281/zenodo.1460976", "LeVeque, Randall J. (1992, Birkh\u00e4user Basel). Numerical Methods for Conservation Laws.", "Liskov, Barbara. (1988). Keynote address - data abstraction and hierarchy. ACM SIGPLAN Notices, 23, 17, http://doi.org/10.1145/62139.6214", "Lukin, Vyacheslav S., Glasser, Alan H., Lowrie, Weston, Meier, Eric T. (2016). Overview of HiFi -- implicit spectral element code framework for multi-fluid plasma applications. ArXiv. https://arxiv.org/abs/1608.06030", "Maggs, J. E. & Morales, G. J. (2019). Nonlocal transport in bounded two-dimensional systems: An iterative method. Phys. Rev. E, 99, 013307, https://doi.org/10.1103/PhysRevE.99.013307", "Malhotra, Ritiek. (2018). Structuring our Plasma factory, Google Summer of Code blog post, https://ritiek.github.io/posts/2018/05/blog-post-2/", "Martin, M. J., Gekelman, W., Van Compernolle, B., Pribyl, P. & Carter, T. (2017). Experimental Observation of Convective Cell Formation due to a Fast Wave Antenna in the Large Plasma Device, Phys. Rev. Lett. 119, 205002, https://doi.org/10.1103/PhysRevLett.119.205002", "Martin, Robert C. (2009, Prentice Hall). Clean Code: A Handbook of Agile Software Craftsmanship.", "Martin, Robert C. (2018, Prentice Hall). Clean Architecture: A Craftman's Guide to Software Structure and Design.", "Matthaeus, W. H., Parashar, T. N., Wan, M. & Wu, P. (2016). Turbulence and proton-electron heating in kinetic plasma. Astrophysical Journal Letters, 827.", "Meneghini, O., Smith, S. P., Snyder, P. B., Staebler, G. M., Candy, J., Belli, E., Lao, L., Kostuk, M., Luce, T., Luda, T., Park, J. M. & Poli, F. (2017). Self-consistent core-pedestal transport simulations with neural network accelerated models. Nuclear Fusion, 57, 086034, https://doi.org/10.1088/1741-4326/aa7776", "Meyer, B. (1988, Prentice Hall). Object Oriented Software Construction, p. 23.", "Morales, G. J. (2018). Investigation of a chaotic thermostat. Phys. Rev. E, 97, 032203, https://doi.org/10.1103/PhysRevE.97.032203", "Murphy, N. A. & Sovinec, C. R. (2008). Global axisymmetric simulations of two-fluid reconnection in an experimentally relevant geometry. Physics of Plasmas, 15, 042313, https://doi.org/10.1063/1.2904600", "Murphy, Nicholas A. & Huang, Yi-Min. (2016). PlasmaPy: beginning a community developed Python package for plasma physics. Zenodo. http://doi.org/10.5281/zenodo.163752", "Murphy, Nicholas A. (2018a). PLEP-0001 \u2013 Purpose and Guidelines for PlasmaPy Enhancement Proposals (Version 1). Zenodo. http://doi.org/10.5281/zenodo.1435977", "Murphy, Nicholas A. (2018b). PLEP-0002 \u2013 PlasmaPy Governance (Version 1). Zenodo. http://doi.org/10.5281/zenodo.1435981", "Murphy, Nicholas A. (2018c). PLEP-0004 \u2013 Licensing of PlasmaPy Repositories (Version 1). Zenodo. http://doi.org/10.5281/zenodo.1435991", "Murphy, Nicholas A. & Mumford, Stuart J. (2018). PLEP-0005 \u2013 PlasmaPy Versioning and Releases (Version 1). Zenodo. http://doi.org/10.5281/zenodo.1451975", "Murphy, Nicholas A., Sta\u0144czak, Dominik, Leonard, Andrew J., Parashar, Tulasi, Kozlowski, Pawel M., Alterman, B. L., Roberts, D. Aaron, Christe, S. D., Conners, Martin, Bobra, Monica, Mason, James Paul, Barnes, Will, McGranaghan, Ryan M., Bhatt, Asti, Erikson, Philip J., Lind, Frank D., Volz, Ryan, Swoboda, John, Hatzigeorgiu, Nick, Inglis, Andrew, deOliveira-Lopes, Felipe Nathan, Ireland, Jack, Coxon, John C., Murray, Sophie A., Yates, Japheth N., Cheung, Mark C. M., Klenzing, Jeff, Stansby, David, He, Han, Huang, Yi-Min, Dong, Chuanfei, Winter, Henry, Buitrago-Casas, Juan-Camilo, Kaur, Manjit, Smith, Sterling, Dudson, Benjamin, Seaton, Daniel B., Comisso, Luca, Halford, Alexa J., Barnak, D. H., Weigel, R. S., Tavant, A., Vandegriff, Jon D., de Val-Borro, Miguel & Savcheva, Antonia. (2019b). Building an open source software ecosystem for cross-disciplinary plasma research and education (Version 1). Zenodo. http://doi.org/10.5281/zenodo.2578277", "Murphy, Nicholas A., Alterman, B. L. & Stansby, D. (2019c). Making plasma research reproducible (Version 1). Zenodo. http://doi.org/10.5281/zenodo.2578291", "Nora, R., Peterson, J. L., Spears, B. K., Field, J. E. & Brandon, S. (2017). Ensemble simulations of inertial confinement implosions. Stat. Anal. Data Min., 10, 230.", "Pezzi, O., Parashar, T. N., Servidio, S., Valentini, F., V\u00e1sconez, C. L., Yang, Y., Malara, F., Matthaeus, W. H. & Veltri, P. (2017a). Revisiting a Classic: The Parker-Moffatt Problem, Astrophysical Journal, 834, 166, https://doi.org/10.3847/1538-4357/834/2/166", "Pezzi, O., Parashar, T. N., Servidio, S., Valentini, F., V\u00e1sconez, C. L., Yang, Y., Malara, F., Matthaeus, W. H. & Veltri, P. (2017b). Colliding Alfv\u00e9n Wave Packets in Magnetohydrodynamics, Hall, and Kinetic Simulations. Journal of Plasma Physics, 83, 705830108, https://doi.org/10.1017/S0022377817000113", "Pezzi, O., Malara, F., Servidio, S., Valentini, F., Parashar, T. N., Matthaeus, W. H. & Veltri, P. (2017c). Turbulence generation during the head-on collision of Alfv\u00e9nic wave packets. Physical Review E, 96, 023201, https://doi.org/10.1103/PhysRevE.96.023201", "PlasmaPy Community, Murphy, Nicholas A., Sta\u0144czak, Dominik, Kozlowski, Pawel M., Langendorf, Samuel J., Leonard, Andrew J., Beckers, Jasper P., Haggerty, Colby C., Mumford, Stuart J., Malhotra, Ritiek, Bessi, Ludovico, Carroll, Sean, Choubey, Apoorv, D\u00edaz P\u00e9rez, Roberto, Einhorn, Leah, Fan, Thomas, Goudeau, Graham, Guidoni, Silvina, Hillairet, Julien, How, Poh Zi, Huang, Yi-Min, Humphrey, Nabil, Isupova, Maria, Kulshrestha, Siddharth, Kuszaj, Piotr, Munn, Joshua, Parashar, Tulasi, Patel, Neil, Raj, Raajit, Sherpa, Dawa Nurbu, Stansby, David, Tavant, Antoine & Xu, Sixue. (2018a). PlasmaPy (Version 0.1.1). Zenodo. http://doi.org/10.5281/zenodo.1436019", "PlasmaPy Community, Murphy, Nicholas A., Leonard, Andrew J., Sta\u0144czak, Dominik, Kozlowski, Pawel M., Langendorf, Samuel J., Haggerty, Colby C., Beckers, Jasper P., Mumford, Stuart J., Parashar, Tulasi N. & Huang, Yi-Min. (2018b). PlasmaPy: an open source community-developed Python package for plasma physics. Zenodo. http://doi.org/10.5281/zenodo.1238132", "Poulos M. J. & Morales, G. J. (2016). Transport properties of a hollow pressure filament in a magnetized plasma. Physics of Plasmas, 23, 092302, http://dx.doi.org/10.1063/1.4962574", "Poulos, M. J. (2019). Model for the operation of an emissive cathode in a large magnetized-plasma. Physics of Plasmas, 26, 022104, https://doi.org/10.1063/1.5063596", "Preston-Werner, Tom (2013). Semantic Versioning (version 2.0.0). https://semver.org/spec/v2.0.0.html", "Prior, C. & Yeates, A.R. (2018). Quantifying reconnective activity in braided vector fields. Phys. Rev. E., 98, 013204, https://doi.org/10.1103/PhysRevE.98.013204", "Rall, L. B. (1981, Springer). Automatic Differentiation: Techniques and Applications.", "Rea, C., Granetz, R. S., Montes, K., Tinguely, R. A., Eidietis, N., Hanson, J. M. & Sammuli, B. (2018). Disruption prediction investigations using Machine Learning tools on DIII-D and Alcator C-Mod. Plasma Physics and Controlled Fusion, 60, 084004, https://doi.org/10.1088/1361-6587/aac7fe", "Regier, J., Fischer, K., Pamnany, K., Noack, A., Revels, J., Lam, M., Howard, S., Giordano, R., Schlegel, D., McAuliffe, J., Thomas, R. & Prabhat (2019). Cataloging the visible universe through Bayesian inference in Julia at petascale. Journal of Parallel and Distributed Computing, 127, 89, https://doi.org/10.1016/j.jpdc.2018.12.008", "Schaeffer, D. B., Winske, D., Larson, D. J., Cowee, M. M., Constantin, C. G., Bondarenko, A. S., Clark, S. E. & Niemann, C. (2017). On the generation of magnetized collisionless shocks in the large plasma device. Physics of Plasmas, 24, 041405, http://dx.doi.org/10.1063/1.4978882", "Schroeder, J. W. R., Skiff, F., Howes, G. G., Kletzing, C. A., Carter, T. A. & Dorfman, S. (2017). Linear theory & measurements of electron oscillations in an inertial Alfv\u00e9n wave. Physics of Plasmas, 24, 032902, http://dx.doi.org/10.1063/1.4978293", "Scopatz, Anthony & Huff, Kathryn D. (2015, O'Reilly Media). Effective Computation in Physics: Field Guide to Research with Python.", "Shen, C., Raymond, J. C., Miki\u0107, Z., Linker, J. A., & Reeves, K. K. (2017). Time-dependent Ionization in a Steady Flow in an MHD Model of the Solar Corona and Wind. Astrophysical Journal, 850, 26, https://doi.org/10.3847/1538-4357/aa93f3", "Smith, D., Fonck, R. J., McKee, G. R., Diallo, A., Kaye, S. M., LeBlanc, B. P. & Sabbagh, S. A. (2016). Evolution patterns and parameter regimes in edge localized modes on the National Spherical Torus Experiment. Plasma Physics and Controlled Fusion, 58, 045003, https://doi.org/10.1088/0741-3335/58/4/045003", "Spears, B. K., Brase, J., Bremer, P.-T., Chen, B., Field, J., Gaffney, J., Kruse, M., Langer, S., Lewis, K., Nora, R., Peterson, J. L., Thiagarajan, J. J., Van Essen, B. & Humbird, K. (2018). Deep learning: A guide for practitioners in the physical sciences. Physics of Plasmas, 25, 080901, https://doi.org/10.1063/1.5020791", "SunPy Community, Mumford, S. J., Christe, S., P\u00e9rez-Su\u00e1rez, D., Ireland, J., Shih, A. Y., Inglis, A. R., Liedtke, S., Hewett, R. J., Mayer, F., Hughitt, K., Freij, N., Meszaros, T., Bennett, S. M., Malocha, M., Evans, J., Agrawal, A., Leonard, A. J., Robitaille, T. P., Mampaey, B., Campos-Rozo, J. I. & Kirk, M. S. (2015). SunPy\u2014Python for solar physics. Computational Science & Discovery, 8, 014009, https://doi.org/10.1088/1749-4699/8/1/014009", "Sydora, R. D., Van Compernolle, B., Karbashewski, S., Morales, G. J., Maggs, J. E. (2017). Nonlinear Convective Heat Transport in Multiple Magnetized Electron Temperature Filaments. Problems of Atomic Science & Technology, Series: No. 1, Plasma Physics (23), p. 100, ISSN 1562-6016.", "Tracey, B., Duraisamy, K. & Alonso, J. J. (2015, American Institute of Aeronautics and Astronautics, Inc.). A Machine Learning Strategy to Assist Turbulence Model Development.", "Turk, Matthew J. (2013). How to Scale a Code in the Human Dimension. ArXiv. https://arxiv.org/abs/1301.7064", "Van Compernolle, B. & Morales, G. J. (2017). Avalanches driven by pressure gradients in a magnetized plasma. Physics of Plasmas, 24, 112302, https://doi.org/10.1063/1.5001321", "Van Compernolle, B., An, X., Bortnik, J., Thorne, R. M., Pribyl, P. & Gekelman, W. (2016) Laboratory simulation of magnetospheric chorus wave generation. Plasma Phys. Control. Fusion, 59, 014016, http://dx.doi.org/10.1088/0741-3335/59/1/014016", "Vay, Jean-Luc, Th\u00e9venet, Maxence, Lehe, R\u00e9mi, Vincenti, Henri, Friedman, Alex, Grote, David, Arefiev, Alexey, Godfrey, Brendan, Tsung, Frank, Huebl, Axel, Bussmann, Michael, Muggli, Patric, Amorim, L\u00edgia Diana, Gschwendtner, Edda, Lu, Wei, Thomas, Alexander, Beck, Arnaud, Antonsen, Thomas, Andriyash, Igor A., Teixeira, Fernando, Arber, Tony, Sonnendr\u00fccker, Eric , Sironi, Lorenzo, d'Humi\u00e8res, Emmanuel Ng, Cho-Kuen, Gi, Lixin, Koga, James K., Maier, Andreas R., Kirchen, Manuel, Jalas, Soeren, Cros, Brigitte, Shadwick, Brad, Kemp, Andreas, Huang, Chengkun, Pukhov, Alexander, Chance, Antoine, Mori, Warren, Decyk, Viktor, An, Weiming, Fonseca, Ricardo, Silva, Luis, Vieira, Jorge, Hogan, Mark, Adelmann, Andreas, Bonnaud, Guy, Fiuza, Frederico, Luginsland, John, Ryne, Robert, Chacon, Luis, Benedetti, Carlo, Qiang, Ji, Ethier, St\u00e9phane, Bruhwiler, David, Cook, Nathan & Stancari, Giulio. (2019). Integrated ecosystem of advanced simulation tools for plasma modeling. Submitted the Plasma 2020 decadal review. To download, follow the link to view submitted white papers and comments at http://sites.nationalacademies.org/bpa/bpa_188502", "Verscharen, D. & Chandran, B. D. G. (2018). NHDS: The New Hampshire Dispersion Relation Solver. Research Notes of the AAS, 2, 13, https://doi.org/10.3847/2515-5172/aabfe3", "Ware, Alexandria, Barnum, Julie, Candey, Robert, Cecconi, Baptiste, Christe, Steven, Faden, Jeremy, Grimes, Eric, Harris, Bernie, Harter, Bryan, Kilcommons, Liam, Loh, Alan, McGuire, Robert, Mumford, Stu
Databáze: OpenAIRE