Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives
Autor: | Jean-Sébastien Baumann, Jean-Marc Ghigo, Alexandre Barras, Aloysius Siriwardena, Omprakash Bande, Christophe Beloin, Rabah Boukherroub, Fernando Ariel Martin, Sabine Szunerits |
---|---|
Přispěvatelé: | Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] (IRI), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Droit et Santé-Université de Lille, Sciences et Technologies, Génétique des Biofilms, Institut Pasteur [Paris], Laboratoire des Glucides (LG), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), A.B., R.B., A.S. and S.S. gratefully acknowledge financial support from the Centre National de Recherche Scientifique (CNRS), the Université Lille 1 and the Nord Pas de Calais region. A.S. gratefully acknowledges financial support and a postdoctoral fellowship to O.B. from the IFCPAR (Project 3905-1). Support from the Region Picardie is acknowledged for a doctoral fellowship for J.-S.B. This work was supported by grants from the Institut Pasteur and from the French Government's Investissement d'Avenir program, Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant no. ANR-10-LABX-62-IBEID)., ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), Université de Lille, Sciences et Technologies-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP) |
Rok vydání: | 2013 |
Předmět: |
Glycan
Materials science MESH: Bacterial Adhesion/*drug effects Fimbria Mannose MESH: *Diamond/chemistry/pharmacology 02 engineering and technology 010402 general chemistry medicine.disease_cause 01 natural sciences Bacterial Adhesion Microbiology chemistry.chemical_compound MESH: Nanoparticles/*chemistry MESH: Biofilms/*drug effects Escherichia coli medicine General Materials Science Cell adhesion Glucans MESH: *Glucans/chemistry/pharmacology MESH: Escherichia coli/*physiology Adhesins Escherichia coli biology Biofilm MESH: Fimbriae Proteins/metabolism Adhesion 021001 nanoscience & nanotechnology [SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology 3. Good health 0104 chemical sciences Bacterial adhesin chemistry Biofilms Fimbriae Bacterial MESH: Escherichia coli/metabolism biology.protein Nanoparticles MESH: Adhesins Fimbriae Proteins Diamond 0210 nano-technology MESH: Bacterial/*metabolism MESH: Fimbriae |
Zdroj: | Nanoscale Nanoscale, Royal Society of Chemistry, 2013, 5 (6), pp.2307--2316. ⟨10.1039/c3nr33826f⟩ Nanoscale, 2013, 5 (6), pp.2307--2316. ⟨10.1039/c3nr33826f⟩ |
ISSN: | 2040-3372 2040-3364 |
DOI: | 10.1039/c3nr33826f |
Popis: | International audience; Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections. |
Databáze: | OpenAIRE |
Externí odkaz: |