Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives

Autor: Jean-Sébastien Baumann, Jean-Marc Ghigo, Alexandre Barras, Aloysius Siriwardena, Omprakash Bande, Christophe Beloin, Rabah Boukherroub, Fernando Ariel Martin, Sabine Szunerits
Přispěvatelé: Institut de Recherche Interdisciplinaire [Villeneuve d'Ascq] (IRI), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Droit et Santé-Université de Lille, Sciences et Technologies, Génétique des Biofilms, Institut Pasteur [Paris], Laboratoire des Glucides (LG), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), A.B., R.B., A.S. and S.S. gratefully acknowledge financial support from the Centre National de Recherche Scientifique (CNRS), the Université Lille 1 and the Nord Pas de Calais region. A.S. gratefully acknowledges financial support and a postdoctoral fellowship to O.B. from the IFCPAR (Project 3905-1). Support from the Region Picardie is acknowledged for a doctoral fellowship for J.-S.B. This work was supported by grants from the Institut Pasteur and from the French Government's Investissement d'Avenir program, Laboratoire d'Excellence 'Integrative Biology of Emerging Infectious Diseases' (grant no. ANR-10-LABX-62-IBEID)., ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), Université de Lille, Sciences et Technologies-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP)
Rok vydání: 2013
Předmět:
Glycan
Materials science
MESH: Bacterial Adhesion/*drug effects
Fimbria
Mannose
MESH: *Diamond/chemistry/pharmacology
02 engineering and technology
010402 general chemistry
medicine.disease_cause
01 natural sciences
Bacterial Adhesion
Microbiology
chemistry.chemical_compound
MESH: Nanoparticles/*chemistry
MESH: Biofilms/*drug effects
Escherichia coli
medicine
General Materials Science
Cell adhesion
Glucans
MESH: *Glucans/chemistry/pharmacology
MESH: Escherichia coli/*physiology
Adhesins
Escherichia coli

biology
Biofilm
MESH: Fimbriae Proteins/metabolism
Adhesion
021001 nanoscience & nanotechnology
[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology
3. Good health
0104 chemical sciences
Bacterial adhesin
chemistry
Biofilms
Fimbriae
Bacterial

MESH: Escherichia coli/metabolism
biology.protein
Nanoparticles
MESH: Adhesins
Fimbriae Proteins
Diamond
0210 nano-technology
MESH: Bacterial/*metabolism
MESH: Fimbriae
Zdroj: Nanoscale
Nanoscale, Royal Society of Chemistry, 2013, 5 (6), pp.2307--2316. ⟨10.1039/c3nr33826f⟩
Nanoscale, 2013, 5 (6), pp.2307--2316. ⟨10.1039/c3nr33826f⟩
ISSN: 2040-3372
2040-3364
DOI: 10.1039/c3nr33826f
Popis: International audience; Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.
Databáze: OpenAIRE