Hesperidin Promotes Osteogenesis and Modulates Collagen Matrix Organization and Mineralization In Vitro and In Vivo
Autor: | Arash Hanifi, Vinicius de Paiva Gonҫalves, Prapaporn Jongwattanapisan, Joyce Belcher, Patricia A. Miguez, Kimberly Perley, Elisabeth R. Barton, Stephen A. Tuin, Nancy Pleshko, Adam Robinson |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0301 basic medicine
collagen Bone Regeneration extracellular matrix Bone Morphogenetic Protein 2 Matrix (biology) Bone morphogenetic protein Bone morphogenetic protein 2 bone Catalysis Article Cell Line osteogenesis Inorganic Chemistry Extracellular matrix lcsh:Chemistry 03 medical and health sciences Hesperidin chemistry.chemical_compound Mice 0302 clinical medicine Calcification Physiologic hesperidin In vivo critical-sized defect bone morphogenetic protein Animals Physical and Theoretical Chemistry Molecular Biology lcsh:QH301-705.5 Spectroscopy Cells Cultured Osteoblasts Cell growth Chemistry Regeneration (biology) Organic Chemistry 030206 dentistry General Medicine Computer Science Applications Cell biology Rats 030104 developmental biology lcsh:Biology (General) lcsh:QD1-999 regeneration |
Zdroj: | International Journal of Molecular Sciences, Vol 22, Iss 3223, p 3223 (2021) International Journal of Molecular Sciences Volume 22 Issue 6 |
ISSN: | 1661-6596 1422-0067 |
Popis: | This study evaluated the direct effect of a phytochemical, hesperidin, on pre-osteoblast cell function as well as osteogenesis and collagen matrix quality, as there is little known about hesperidin’s influence in mineralized tissue formation and regeneration. Hesperidin was added to a culture of MC3T3-E1 cells at various concentrations. Cell proliferation, viability, osteogenic gene expression and deposited collagen matrix analyses were performed. Treatment with hesperidin showed significant upregulation of osteogenic markers, particularly with lower doses. Mature and compact collagen fibrils in hesperidin-treated cultures were observed by picrosirius red staining (PSR), although a thinner matrix layer was present for the higher dose of hesperidin compared to osteogenic media alone. Fourier-transform infrared spectroscopy indicated a better mineral-to-matrix ratio and matrix distribution in cultures exposed to hesperidin and confirmed less collagen deposited with the 100-µM dose of hesperidin. In vivo, hesperidin combined with a suboptimal dose of bone morphogenetic protein 2 (BMP2) (dose unable to promote healing of a rat mandible critical-sized bone defect) in a collagenous scaffold promoted a well-controlled (not ectopic) pattern of bone formation as compared to a large dose of BMP2 (previously defined as optimal in healing the critical-sized defect, although of ectopic nature). PSR staining of newly formed bone demonstrated that hesperidin can promote maturation of bone organic matrix. Our findings show, for the first time, that hesperidin has a modulatory role in mineralized tissue formation via not only osteoblast cell differentiation but also matrix organization and matrix-to-mineral ratio and could be a potential adjunct in regenerative bone therapies. |
Databáze: | OpenAIRE |
Externí odkaz: |