Expression invariant 3D face recognition with a Morphable Model
Autor: | Brian Amberg, Reinhard Knothe, Thomas Vetter |
---|---|
Rok vydání: | 2008 |
Předmět: |
Computer science
business.industry 3D single-object recognition ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Iterative closest point 020207 software engineering Pattern recognition 02 engineering and technology Mathematical morphology Facial recognition system Expression (mathematics) ComputingMethodologies_PATTERNRECOGNITION Robustness (computer science) 0202 electrical engineering electronic engineering information engineering Three-dimensional face recognition 020201 artificial intelligence & image processing Computer vision Artificial intelligence business Image retrieval |
Zdroj: | FG |
DOI: | 10.1109/afgr.2008.4813376 |
Popis: | We describe an expression-invariant method for face recognition by fitting an identity/expression separated 3D Morphable Model to shape data. The expression model greatly improves recognition and retrieval rates in the uncooperative setting, while achieving recognition rates on par with the best recognition algorithms in the face recognition great vendor test. The fitting is performed with a robust nonrigid ICP algorithm. It is able to perform face recognition in a fully automated scenario and on noisy data. The system was evaluated on two datasets, one with a high noise level and strong expressions, and the standard UND range scan database, showing that while expression invariance increases recognition and retrieval performance for the expression dataset, it does not decrease performance on the neutral dataset. The high recognition rates are achieved even with a purely shape based method, without taking image data into account. |
Databáze: | OpenAIRE |
Externí odkaz: |