Bioaugmentation of Native Fungi, an Efficient Strategy for the Bioremediation of an Aged Industrially Polluted Soil With Heavy Hydrocarbons
Autor: | Marc Viñas, X Moreno-Ventas, Francesc X. Prenafeta-Boldú, María Cecilia Medaura, Miriam Guivernau |
---|---|
Přispěvatelé: | Universidad de Cantabria, Producció Animal, Sostenibilitat en Biosistemes |
Rok vydání: | 2021 |
Předmět: |
Microbiology (medical)
Bioaugmentation Indigenous hydrocarbonoclastic fungi lcsh:QR1-502 indigenous hydrocarbonoclastic fungi fungal-bacterial interactions 010501 environmental sciences 01 natural sciences Microbiology Aged-polluted soil Native-fungal-bioaugmentation high molecular weight polycyclic aromatic hydrocarbons lcsh:Microbiology Biostimulation 03 medical and health sciences chemistry.chemical_compound Bioremediation Original Research 030304 developmental biology 0105 earth and related environmental sciences Fluoranthene 0303 health sciences Chemistry Fungal-bacterial interactions aged-polluted soil Mycoremediation Biodegradation native-fungal-bioaugmentation mycoremediation Environmental chemistry Ecotoxicity Microcosm High molecular weight polycyclic aromatic hydrocarbons |
Zdroj: | Frontiers in microbiology March 2021 Volume 12 Article 626436 UCrea Repositorio Abierto de la Universidad de Cantabria Universidad de Cantabria (UC) Frontiers in Microbiology, Vol 12 (2021) IRTA Pubpro. Open Digital Archive Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Frontiers in Microbiology |
Popis: | The concurrence of structurally complex petroleum-associated contaminants at relatively high concentrations, with diverse climatic conditions and textural soil characteristics, hinders conventional bioremediation processes. Recalcitrant compounds such as high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and heavy alkanes commonly remain after standard soil bioremediation at concentrations above regulatory limits. The present study assessed the potential of native fungal bioaugmentation as a strategy to promote the bioremediation of an aged industrially polluted soil enriched with heavy hydrocarbon fractions. Microcosms assays were performed by means of biostimulation and bioaugmentation, by inoculating a defined consortium of six potentially hydrocarbonoclastic fungi belonging to the genera Penicillium, Ulocladium, Aspergillus, and Fusarium, which were isolated previously from the polluted soil. The biodegradation performance of fungal bioaugmentation was compared with soil biostimulation (water and nutrient addition) and with untreated soil as a control. Fungal bioaugmentation resulted in a higher biodegradation of total petroleum hydrocarbons (TPH) and of HMW-PAHs than with biostimulation. TPH (C14-C35) decreased by a 39.90 ± 1.99% in bioaugmented microcosms vs. a 24.17 ± 1.31% in biostimulated microcosms. As for the effect of fungal bioaugmentation on HMW-PAHs, the 5-ringed benzo(a)fluoranthene and benzo(a)pyrene were reduced by a 36% and 46%, respectively, while the 6-ringed benzoperylene decreased by a 28%, after 120 days of treatment. Biostimulated microcosm exhibited a significantly lower reduction of 5- and 6-ringed PAHs (8% and 5% respectively). Higher TPH and HMW-PAHs biodegradation levels in bioaugmented microcosms were also associated to a significant decrease in acute ecotoxicity (EC50) by Vibrio fischeri bioluminiscence inhibition assays. Molecular profiling and counting of viable hydrocarbon-degrading bacteria from soil microcosms revealed that fungal bioaugmentation promoted the growth of autochthonous active hydrocarbon-degrading bacteria. The implementation of such an approach to enhance hydrocarbon biodegradation should be considered as a novel bioremediation strategy for the treatment of the most recalcitrant and highly genotoxic hydrocarbons in aged industrially polluted soils. |
Databáze: | OpenAIRE |
Externí odkaz: |