Reconstructing Words from Right-Bounded-Block Words

Autor: Pamela Fleischmann, Michel Rigo, Florin Manea, Dirk Nowotka, Marie Lejeune
Jazyk: angličtina
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
Discrete Mathematics (cs.DM)
Formal Languages and Automata Theory (cs.FL)
Computer Science::Information Retrieval
010102 general mathematics
Astrophysics::Instrumentation and Methods for Astrophysics
Computer Science - Formal Languages and Automata Theory
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
0102 computer and information sciences
01 natural sciences
Article
Combinatorics
Combinatorics on words
Reconstruction problem
010201 computation theory & mathematics
Block (telecommunications)
Bounded function
Computer Science (miscellaneous)
FOS: Mathematics
Mathematics - Combinatorics
Computer Science::General Literature
Combinatorics (math.CO)
0101 mathematics
Computer Science - Discrete Mathematics
Mathematics
Zdroj: Developments in Language Theory
Popis: A reconstruction problem of words from scattered factors asks for the minimal information, like multisets of scattered factors of a given length or the number of occurrences of scattered factors from a given set, necessary to uniquely determine a word. We show that a word \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\in \{\mathtt {a},\mathtt {b}\}^*$$\end{document} can be reconstructed from the number of occurrences of at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min (|w|_\mathtt {a},|w|_\mathtt {b})+1$$\end{document} scattered factors of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {a}^i \mathtt {b}$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|w|_{\mathtt {a}}$$\end{document} is the number of occurrences of the letter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathtt {a}$$\end{document} in w. Moreover, we generalize the result to alphabets of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1, \ldots , q\}$$\end{document} by showing that at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}^{q-1} |w|_i \, (q-i+1)$$\end{document} scattered factors suffices to reconstruct w. Both results improve on the upper bounds known so far. Complexity time bounds on reconstruction algorithms are also considered here.
Databáze: OpenAIRE