Skein relations for tangle Floer homology

Autor: C.-M. Michael Wong, Ina Petkova
Rok vydání: 2020
Předmět:
Zdroj: Quantum Topology. 11:119-225
ISSN: 1663-487X
Popis: In a previous paper, V\'ertesi and the first author used grid-like Heegaard diagrams to define tangle Floer homology, which associates to a tangle $T$ a differential graded bimodule $\widetilde{\mathrm{CT}} (T)$. If $L$ is obtained by gluing together $T_1, \dotsc, T_m$, then the knot Floer homology $\hat{\mathrm{HFK}}(L)$ of $L$ can be recovered from $\widetilde{\mathrm{CT}} (T_1), \dotsc, \widetilde{\mathrm{CT}} (T_m)$. In the present paper, we prove combinatorially that tangle Floer homology satisfies unoriented and oriented skein relations, generalizing the skein exact triangles for knot Floer homology.
Comment: 72 pages, 48 figures, 5 tables. Minor revisions
Databáze: OpenAIRE