Comparative study of imputation algorithms applied to the prediction of student performance

Autor: Concepción Crespo-Turrado, Francisco Javier de Cos Juez, Emilio Corchado, Francisco Javier Pérez Castelo, José Luis Calvo-Rolle, Fernando Sánchez-Lasheras, José-Luis Casteleiro-Roca, José Antonio López-Vázquez
Rok vydání: 2019
Předmět:
Zdroj: RUC. Repositorio da Universidade da Coruña
instname
Scopus
RUO. Repositorio Institucional de la Universidad de Oviedo
ISSN: 2014-5764
DOI: 10.1093/jigpal/jzz071
Popis: [Abstract]: Student performance and its evaluation remain a serious challenge for education systems. Frequently, the recording and processing of students’ scores in a specific curriculum have several f laws for various reasons. In this context, the absence of data from some of the student scores undermines the efficiency of any future analysis carried out in order to reach conclusions. When this is the case, missing data imputation algorithms are needed. These algorithms are capable of substituting, with a high level of accuracy, the missing data for predicted values. This research presents the hybridization of an algorithm previously proposed by the authors called adaptive assignation algorithm (AAA), with a well-known technique called multivariate imputation by chained equations (MICE). The results show how the suggested methodology outperforms both algorithms. Ministerio de Economía y Competitividad ; AYA2014-57648-P Asturias. Consejería de Economía y Empleo ; FC-15-GRUPIN14-017
Databáze: OpenAIRE