Infinite Monochromatic Sumsets for Colourings of the Reals

Autor: Dániel T. Soukup, Imre Leader, Saharon Shelah, Paul A. Russell, Péter Komjáth, Zoltán Vidnyánszky
Přispěvatelé: Apollo - University of Cambridge Repository
Rok vydání: 2019
Předmět:
DOI: 10.17863/cam.35944
Popis: N. Hindman, I. Leader and D. Strauss proved that it is consistent that there is a finite colouring of $\mathbb R$ so that no infinite sumset $X+X=\{x+y:x,y\in X\}$ is monochromatic. Our aim in this paper is to prove a consistency result in the opposite direction: we show that, under certain set-theoretic assumptions, for any $c:\mathbb R\to r$ with $r$ finite there is an infinite $X\subseteq \mathbb R$ so that $c$ is constant on $X+X$.
Comment: 12 pages, final version accepted for publication in the Proceedings of AMS (https://doi.org/10.1090/proc/14431). Paper 1129 on S. Shelah's list. Comments are very welcome
Databáze: OpenAIRE