Perturbation theory of the quadratic Lotka-Volterra double center

Autor: Lubomir Gavrilov, Jean-Pierre Françoise
Přispěvatelé: Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Communications in Contemporary Mathematics
Communications in Contemporary Mathematics, 2021, 24 (5), pp.2150064. ⟨10.1142/S0219199721500644⟩
ISSN: 0219-1997
Popis: We revisit the bifurcation theory of the Lotka-Volterra quadratic system \begin{eqnarray} X_0 :\left\{\begin{aligned} \dot{x}=& - y -x^2+y^2 ,\\ \dot{y}= &\;\;\;\;x - 2xy \end{aligned} \right. \end{eqnarray} with respect to arbitrary quadratic deformations. The system $X_0$ has a double center, which is moreover isochronous. We show that the deformed system $X_0$ can have at most two limit cycles on the finite plane, with possible distribution $(i,j)$, where $i+j\leq2$. Our approach is based on the study of pairs of bifurcation functions associated to the centers, expressed in terms of iterated path integrals of length two.
40 pages
Databáze: OpenAIRE