Theory of continuous rate-dependent hysteresis
Autor: | Fayçal Ikhouane |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions |
Rok vydání: | 2020 |
Předmět: |
Histèresi
Numerical Analysis Generality Rate dependent Computer science Hysteresis Applied Mathematics Matemàtiques i estadística [Àrees temàtiques de la UPC] Rate independent Topology 01 natural sciences 010305 fluids & plasmas Operator (computer programming) Mathematical equations Modeling and Simulation 0103 physical sciences Premise Graph (abstract data type) 010306 general physics |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya instname |
ISSN: | 1007-5704 |
DOI: | 10.1016/j.cnsns.2019.104970 |
Popis: | Hysteresis is a special type of behavior ubiquitous in science and engineering: it consists in that slow inputs produce a loop in the steady-state part of the graph output-versus-input. On the other hand, mathematical textbooks on hysteresis use a different property to define hysteresis processes: rate independence. This property says that the graph output-versus-input remains unchanged under a time-scale change. However, experimental evidence shows the existence of physical processes that produce loops in steady state for slow inputs without being rate independent: these processes are called rate-dependent hysteresis. This fact raises the following issue. How can we build a framework in which we can study hysteresis phenomena for which the rate-independence approximation is insufficient? The attempts to answer this question have been few and limited up till now. In this paper we propose a mathematical framework for the description and analysis of rate-dependent hysteresis processes for which a continuous input produces a continuous output and a continuous hysteresis loop. The methodology that we use to obtain our theory consists in (1) making a list of experimentally observed properties of hysteresis which we call inferences, (2) proposing a mathematical equation -called premise- as a characteristic of hysteresis systems, and (3) proving analytically that the premise leads to all inferences. The operational formulation that we use provides a high degree of generality, and leads to several inferences from one single premise. To illustrate the usefulness of the tools that we introduce, we propose a mathematical model that generates rate-dependent operators from rate-independent ones. We provide the analytic expression of the hysteresis loop of the rate-dependent operator in terms of the hysteresis loop of its rate-independent component. This result is illustrated by means of numerical simulations. |
Databáze: | OpenAIRE |
Externí odkaz: |