Computationally Efficient Assessments of the Effects of Radiative Transfer, Turbulence Radiation Interactions, and Finite Rate Chemistry in the Mach 20 Reentry F Flight Vehicle
Autor: | Gautham Krishnamoorthy, Lauren Elizabeth Clarke |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
020301 aerospace & aeronautics
Shock (fluid dynamics) Article Subject Chemistry Turbulence 02 engineering and technology Mechanics 01 natural sciences 010305 fluids & plasmas Boundary layer symbols.namesake Classical mechanics 0203 mechanical engineering Mach number Thermal radiation Attenuation coefficient 0103 physical sciences symbols Radiative transfer Shock tube |
Zdroj: | Journal of Computational Engineering. |
ISSN: | 2356-7260 |
DOI: | 10.1155/2016/8401249 |
Popis: | Effects of finite rate chemistry, radiative heat transfer, and turbulence radiation interactions (TRI) are assessed in a fully coupled manner in simulations of the Mach 20 Reentry F flight vehicle. Add-on functions were employed to compute a Planck mean absorption coefficient and the temperature self-correlation term (for TRI effects) in the optically thin shock layer. Transition onset was induced by specifying a wall roughness height at the experimentally observed transition location. The chemistry was modeled employing eight elementary reactions and an equilibrium approach allowing species to relax towards their chemical equilibrium values over the process characteristic time scale. The wall heat fluxes in the turbulent region, density, and velocity profiles compared reasonably well against measurements as well as similar calculations reported previously. The density predictions were more sensitive to the choice of modeling options than the velocities. The radiative source term magnitude agreed closely with its measurements deduced from shock tube experiments. The TRI model predicted a 60% enhancement in emission due to temperature fluctuations in the turbulent boundary layer. While the variations in density and velocity predictions among the models diminished along the length of the body, the O and NO prediction variations extended well into the turbulent boundary layer. |
Databáze: | OpenAIRE |
Externí odkaz: |