Pharmacological characterization of a novel phosphodiesterase type 5 (PDE5) inhibitor lodenafil carbonate on human and rabbit corpus cavernosum
Autor: | Gilberto De Nucci, Edson Antunes, Raquel Lorenzetti, Cristina E. Okuyama, Cleber E. Teixeira, Haroldo A. Toque |
---|---|
Rok vydání: | 2008 |
Předmět: |
Adult
Male medicine.medical_specialty medicine.drug_mechanism_of_action Sildenafil Phosphodiesterase Inhibitors Carbonates Administration Oral Piperazines Sildenafil Citrate Nitric oxide chemistry.chemical_compound Dogs Drug Stability Erectile Dysfunction Tandem Mass Spectrometry Internal medicine medicine Animals Humans Prodrugs Sulfones Phosphodiesterase inhibitor Cyclic GMP Pharmacology biology Dose-Response Relationship Drug Lodenafil Electric Stimulation Rats Endocrinology Pyrimidines chemistry Enzyme inhibitor Purines cGMP-specific phosphodiesterase type 5 Injections Intravenous biology.protein Rabbits Soluble guanylyl cyclase Phosphodiesterase 5 inhibitor Chromatography Liquid Penis |
Zdroj: | European journal of pharmacology. 591(1-3) |
ISSN: | 0014-2999 |
Popis: | Nitrergic nerves and endothelial cells release nitric oxide (NO) in the corpus cavernosum, a key mediator that stimulates soluble guanylyl cyclase to increase cGMP levels causing penile erection. Phosphodiesterase 5 (PDE5) inhibitors, such as sildenafil, prolong the NO effects by inhibiting cGMP breakdown. Here, we report a novel PDE5 inhibitor, lodenafil carbonate, (Bis-(2-{4-[4-ethoxy-3-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-benzenesulfonyl]piperazin-1-yl}-ethyl)carbonate) that is a dimer of lodenafil. We therefore aimed to compare the effects of sildenafil, lodenafil and lodenafil carbonate on in vitro human and rabbit cavernosal relaxations, activity of crude PDE extracts from human platelets, as well as stability and metabolic studies in rat, dog and human plasma. Pharmacokinetic evaluations after intravenous and oral administration were performed in male beagles. Functional experiments were conducted using organ bath techniques. Pharmacokinetics was studied in beagles by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), following oral or intravascular administration. All PDE5 inhibitors tested concentration-dependently relaxed (0.001-100 microM) phenylephrine-precontracted rabbit and human corpus cavernosum. The cavernosal relaxations evoked by either acetylcholine (0.01-100 microM) or electrical field stimulation (EFS, 1-20 Hz) were markedly potentiated by sildenafil, lodenafil and lodenafil carbonate. Lodenafil carbonate was more potent to inhibit the cGMP hydrolysis in PDE extracts compared with lodenafil and sildenafil. Following intravascular and single oral administration of lodenafil carbonate, only lodenafil and norlodenafil were detected in vivo. These results indicate that lodenafil carbonate works as a prodrug, being lodenafil the active moiety of lodenafil carbonate. |
Databáze: | OpenAIRE |
Externí odkaz: |