Preliminary results on algorithms for multi-kinect trajectory fusion in a living lab
Autor: | Fabrice Jumel, Jacques Saraydaryan, Loic Sevrin, Bertrand Massot, Nacer Abouchi, Norbert Noury |
---|---|
Přispěvatelé: | INL - Capteurs Biomédicaux (INL - Capteurs), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Conception de Systèmes Hétérogènes (INL - CSH) |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Flexibility (engineering)
Engineering Activities of daily living Health management system business.industry media_common.quotation_subject Biomedical Engineering Biophysics 02 engineering and technology Software Living lab [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing Human–computer interaction 020204 information systems 0202 electrical engineering electronic engineering information engineering Trajectory Systems architecture 020201 artificial intelligence & image processing Computer vision Artificial intelligence business Autonomy media_common |
Zdroj: | Innovation and Research in BioMedical engineering Innovation and Research in BioMedical engineering, Elsevier Masson, 2015, 36 (6), pp.361-366. ⟨10.1016/j.irbm.2015.10.003⟩ |
ISSN: | 1959-0318 |
DOI: | 10.1016/j.irbm.2015.10.003⟩ |
Popis: | International audience; Abstract : Everyday activity of an individual is related to his health status. In order to improve daily health monitoring at home, an indoor position tracking system has been designed. The latter is based on a network of depth cameras to detect and track people s position. The trajectories obtained from each camera are merged to reconstruct each individual s own entire trajectory within the apartment, from which home activities can be derived. In this way, the early detection of a change in daily activities of the elderly will highlight disabilities and loss of autonomy. Standard modules and software were implemented in the system architecture to integrate sensors and systems seamlessly to provide high flexibility and integration capacity for future developments. This system is meant to improve homecare health management for a better end of life at an affordable price for the community. (C) 2015 AGBM. Published by Elsevier Masson SAS. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |