Evidence of lithium mobility under neutron irradiation
Autor: | Steven R. Spurgeon, Gary J. Sevigny, Zihua Zhu, Shawn L. Riechers, Xiao-Ying Yu, Jennifer Yao, Walter G. Luscher, Weilin Jiang, Bethany E. Matthews |
---|---|
Rok vydání: | 2021 |
Předmět: |
Mining engineering. Metallurgy
Materials science Cladding Scanning electron microscope TN1-997 Metals and Alloys Analytical chemistry chemistry.chemical_element Lithium engineering.material Tritium Cladding (fiber optics) Focused ion beam Surfaces Coatings and Films Biomaterials Secondary ion mass spectrometry Coating chemistry Depth profiling Multimodal imaging Scanning transmission electron microscopy Ceramics and Composites engineering Irradiation |
Zdroj: | Journal of Materials Research and Technology, Vol 14, Iss, Pp 475-483 (2021) |
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2021.06.066 |
Popis: | Understanding compositional and microstructural changes in functional intermetallic coatings is of great importance for fusion energy and nuclear materials applications. Tritium (3H) and lithium (6Li, 7Li) transport within a neutron irradiated target rod employing an aluminide-coated austenitic stainless-steel cladding was investigated using state-of-the-art multimodal imaging. Specifically, a scanning electron microscope augmented with focused ion beam (SEM-FIB) was used to prepare lift-out samples of the irradiated coating for microanalysis. Scanning transmission electron microscopy (STEM) was used to acquire atomic-scale information on the coating surface microstructure, morphology, and composition. Atomic force microscopy (AFM) was used to determine lift-out dimensions nondestructively. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed the presence of carbonaceous species and unexpected lithium isotopic distributions in the irradiated tubing, suggesting light isotope mobility between internal target components during irradiation. SIMS chemical mapping of aluminide coatings at core midplane and lower core locations of the cladding shows that light isotopic (e.g., 3H, 6Li, 7Li) distributions are different in the irradiated coating. Advance correlative imaging results suggest lithium transport during the tritium production process and give new insights into the fundamental transport mechanism within the target during irradiation and non-equilibrium conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |