X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting
Autor: | Domenick F. Leto, Allyssa A. Massie, Timothy A. Jackson, Hannah E. Colmer |
---|---|
Rok vydání: | 2016 |
Předmět: |
Models
Molecular Analytical chemistry chemistry.chemical_element Electrons Manganese Zero field splitting 010402 general chemistry 01 natural sciences law.invention Inorganic Chemistry law Coordination Complexes Complete active space Physical and Theoretical Chemistry Spectroscopy Electron paramagnetic resonance Hyperfine structure 010405 organic chemistry Magnetic circular dichroism Electron Spin Resonance Spectroscopy 0104 chemical sciences Oxygen Crystallography chemistry Quantum Theory Density functional theory |
Zdroj: | Inorganic chemistry. 55(7) |
ISSN: | 1520-510X |
Popis: | X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in reproducing experimental E/D values. Overall, this work adds to the limited investigations of Mn(IV) ground-state properties and provides an initial assessment for calculating Mn(IV) ZFS parameters with quantum chemical methods. |
Databáze: | OpenAIRE |
Externí odkaz: |