Least Wasserstein distance between disjoint shapes with perimeter regularization
Autor: | Michael Novack, Ihsan Topaloglu, Raghavendra Venkatraman |
---|---|
Rok vydání: | 2021 |
Předmět: | |
DOI: | 10.48550/arxiv.2108.04390 |
Popis: | We prove the existence of global minimizers to the double minimization problem \[ \inf\Big\{ P(E) + \lambda W_p(\mathcal{L}^n \lfloor \, E,\mathcal{L}^n \lfloor\, F) \colon |E \cap F| = 0, \, |E| = |F| = 1\Big\}, \] where $P(E)$ denotes the perimeter of the set $E$, $W_p$ is the $p$-Wasserstein distance between Borel probability measures, and $\lambda > 0$ is arbitrary. The result holds in all space dimensions, for all $p \in [1,\infty),$ and for all positive $\lambda $. This answers a question of Buttazzo, Carlier, and Laborde. Comment: This is a post-peer-review, pre-copyedit version of an article published in Journal of Functional Analysis. The final authenticated version is available online at: https://doi.org/10.1016/j.jfa.2022.109732 |
Databáze: | OpenAIRE |
Externí odkaz: |