Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach

Autor: Kueffner R., Zach N., Bronfeld M., Norel R., Atassi N., Balagurusamy V., Di Camillo B., Chio A., Cudkowicz M., Dillenberger D., Garcia-Garcia J., Hardiman O., Hoff B., Knight J., Leitner M. L., Li G., Mangravite L., Norman T., Wang L., Xiao J., Fang W. -C., Peng J., Yang C., Chang H. -J., Stolovitzky G., Alkallas R., Anghel C., Avril J., Bacardit J., Balser B., Balser J., Bar-Sinai Y., Ben-David N., Ben-Zion E., Bliss R., Cai J., Chernyshev A., Chiang J. -H., Chicco D., Corriveau B. A. N., Dai J., Deshpande Y., Desplats E., Durgin J. S., Espiritu S. M. G., Fan F., Fevrier P., Fridley B. L., Godzik A., Golinska A., Gordon J., Graw S., Guo Y., Herpelinck T., Hopkins J., Huang B., Jacobsen J., Jahandideh S., Jeon J., Ji W., Jung K., Karanevich A., Koestler D. C., Kozak M., Kurz C., Lalansingh C., Larrieu T., Lazzarini N., Lerner B., Lesinski W., Liang X., Lin X., Lowe J., Mackey L., Meier R., Min W., Mnich K., Nahmias V., Noel-Macdonnell J., O'donnell A., Paadre S., Park J., Polewko-Klim A., Raghavan R., Rudnicki W., Saghapour E., Salomond J. -B., Sankaran K., Sendorek D., Sharan V., Shiah Y. -J., Sirois J. -K., Sumanaweera D. N., Usset J., Vang Y. S., Vens C., Wadden D., Wang D., Wong W. C., Xie X., Xu Z., Yang H. -T., Yu X., Zhang H., Zhang L., Zhang S., Zhu S.
Přispěvatelé: Kueffner, R, Zach, N, Bronfeld, M, Norel, R, Atassi, N, Balagurusamy, V, Di Camillo, B, Chio, A, Cudkowicz, M, Dillenberger, D, Garcia-Garcia, J, Hardiman, O, Hoff, B, Knight, J, Leitner, M, Li, G, Mangravite, L, Norman, T, Wang, L, Xiao, J, Fang, W, Peng, J, Yang, C, Chang, H, Stolovitzky, G, Alkallas, R, Anghel, C, Avril, J, Bacardit, J, Balser, B, Balser, J, Bar-Sinai, Y, Ben-David, N, Ben-Zion, E, Bliss, R, Cai, J, Chernyshev, A, Chiang, J, Chicco, D, Corriveau, B, Dai, J, Deshpande, Y, Desplats, E, Durgin, J, Espiritu, S, Fan, F, Fevrier, P, Fridley, B, Godzik, A, Golinska, A, Gordon, J, Graw, S, Guo, Y, Herpelinck, T, Hopkins, J, Huang, B, Jacobsen, J, Jahandideh, S, Jeon, J, Ji, W, Jung, K, Karanevich, A, Koestler, D, Kozak, M, Kurz, C, Lalansingh, C, Larrieu, T, Lazzarini, N, Lerner, B, Lesinski, W, Liang, X, Lin, X, Lowe, J, Mackey, L, Meier, R, Min, W, Mnich, K, Nahmias, V, Noel-Macdonnell, J, O'Donnell, A, Paadre, S, Park, J, Polewko-Klim, A, Raghavan, R, Rudnicki, W, Saghapour, E, Salomond, J, Sankaran, K, Sendorek, D, Sharan, V, Shiah, Y, Sirois, J, Sumanaweera, D, Usset, J, Vang, Y, Vens, C, Wadden, D, Wang, D, Wong, W, Xie, X, Xu, Z, Yang, H, Yu, X, Zhang, H, Zhang, L, Zhang, S, Zhu, S
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0301 basic medicine
Drug trial
Databases
Factual

Organizations
Nonprofit

lcsh:Medicine
Disease
Neurodegenerative
Stratification (mathematics)
Machine Learning
DOUBLE-BLIND
0302 clinical medicine
Multidisciplinary approach
Cluster Analysis
Amyotrophic lateral sclerosis
lcsh:Science
PREDICTORS
Clinical Trials as Topic
Multidisciplinary
Algorithm
Multidisciplinary Sciences
Italy
SURVIVAL
Science & Technology - Other Topics
GENETIC-HETEROGENEITY
Crowdsourcing
TRIAL
CREATININE
Nonprofit
Algorithms
Human
medicine.medical_specialty
ALS Stratification Consortium
Clinical Trials and Supportive Activities
Predictive medicine
MEDLINE
Article
03 medical and health sciences
Databases
Rare Diseases
Clinical Research
medicine
Humans
Intensive care medicine
Factual
Organizations
Cluster Analysi
Science & Technology
business.industry
DEXPRAMIPEXOLE
lcsh:R
DISEASE PROGRESSION
Amyotrophic Lateral Sclerosis
Neurosciences
OUTCOME MEASURES
medicine.disease
Brain Disorders
Clinical trial
BODY-MASS INDEX
030104 developmental biology
Orphan Drug
Good Health and Well Being
ING-IND/34 - BIOINGEGNERIA INDUSTRIALE
lcsh:Q
ALS
business
Ireland
030217 neurology & neurosurgery
Amyotrophic Lateral Sclerosi
Zdroj: Scientific Reports
Scientific reports, vol 9, iss 1
Scientific Reports, Vol 9, Iss 1, Pp 1-14 (2019)
ISSN: 2045-2322
Popis: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development. ispartof: SCIENTIFIC REPORTS vol:9 issue:1 ispartof: location:England status: published
Databáze: OpenAIRE