Electrical transport properties driven by unique bonding configuration in gamma-GeSe
Autor: | Jeongsu Jang, Joonho Kim, Dongchul Sung, Jong Hyuk Kim, Joong-Eon Jung, Sol Lee, Jinsub Park, Chaewoon Lee, Heesun Bae, Seongil Im, Kibog Park, Young Jai Choi, Suklyun Hong, Kwanpyo Kim |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
Condensed Matter - Materials Science
Condensed Matter - Mesoscale and Nanoscale Physics Mechanical Engineering Mesoscale and Nanoscale Physics (cond-mat.mes-hall) Materials Science (cond-mat.mtrl-sci) FOS: Physical sciences General Materials Science Bioengineering General Chemistry Applied Physics (physics.app-ph) Physics - Applied Physics Condensed Matter Physics |
Popis: | Group-IV monochalcogenides have recently shown great potential for their thermoelectric, ferroelectric, and other intriguing properties. The electrical properties of group-IV monochalcogenides exhibit a strong dependence on the chalcogen type. For example, GeTe exhibits high doping concentration, whereas S/Se-based chalcogenides are semiconductors with sizable bandgaps. Here, we investigate the electrical and thermoelectric properties of gamma-GeSe, a recently identified polymorph of GeSe. gamma-GeSe exhibits high electrical conductivity (~106 S/m) and a relatively low Seebeck coefficient (9.4 uV/K at room temperature) owing to its high p-doping level (5x1021 cm-3), which is in stark contrast to other known GeSe polymorphs. Elemental analysis and first-principles calculations confirm that the abundant formation of Ge vacancies leads to the high p-doping concentration. The magnetoresistance measurements also reveal weak-antilocalization because of spin-orbit coupling in the crystal. Our results demonstrate that gamma-GeSe is a unique polymorph in which the modified local bonding configuration leads to substantially different physical properties. |
Databáze: | OpenAIRE |
Externí odkaz: |