Inference from the stationary distribution of allele frequencies in a family of Wright–Fisher models with two levels of genetic variability

Autor: Jake M. Ferguson, Erkan Ozge Buzbas
Rok vydání: 2018
Předmět:
Zdroj: Theoretical Population Biology. 122:78-87
ISSN: 0040-5809
DOI: 10.1016/j.tpb.2018.03.004
Popis: The distribution of allele frequencies obtained from diffusion approximations to Wright-Fisher models are useful in developing intuition about the population level effects of evolutionary processes. The statistical properties of the stationary distributions of K-allele models have been extensively studied under neutrality or under selection. Here, we introduce a new family of Wright-Fisher models in which there are two hierarchical levels of genetic variability. The genotypes composed of alleles differing from each other at the selected level have fitness differences with respect to each other and evolve under selection. The genotypes composed of alleles differing from each other only at the neutral level have the same fitness and evolve under neutrality. We show that with an appropriate scaling of the mutation parameter with respect to the number of alleles at each level, the frequencies of alleles at the selected and the neutral level are conditionally independent of each other, conditional on knowing the number of alleles at all levels. This conditional independence allows us to simulate from the the joint stationary distribution of the allele frequencies. We use these simulated frequencies to perform inference on parameters of the model with two levels of genetic variability using Approximate Bayesian Computation.
Databáze: OpenAIRE