On the power of symmetric linear programs

Autor: Anuj Dawar, Joanna Ochremiak, Albert Atserias
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. ALBCOM - Algorísmia, Bioinformàtica, Complexitat i Mètodes Formals, Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals, Universitat Politècnica de Catalunya [Barcelona] (UPC), Computer Laboratory [Cambridge], University of Cambridge [UK] (CAM), Centre National de la Recherche Scientifique (CNRS), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Dawar, Anuj [0000-0003-4014-8248], Apollo - University of Cambridge Repository
Jazyk: angličtina
Rok vydání: 2021
Předmět:
FOS: Computer and information sciences
Computer Science - Logic in Computer Science
Linear programming
Computer science
Boolean circuit
Polytope
02 engineering and technology
Computational Complexity (cs.CC)
Upper and lower bounds
Vocabulary
01 natural sciences
cs.LO
Extended formulations
Lift (mathematics)
Symmetric group
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
0202 electrical engineering
electronic engineering
information engineering

Mathematics - Optimization and Control
Complexitat computacional
ComputingMilieux_MISCELLANEOUS
Mathematics
cs.CC
Complexity theory
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
Sense (electronics)
Programació lineal
Graph
Exponential function
Power (physics)
Computational complexity
Informàtica::Informàtica teòrica [Àrees temàtiques de la UPC]
Planted clique
010201 computation theory & mathematics
Hardware and Architecture
Logic gate
020201 artificial intelligence & image processing
Information Systems
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
Optimization
Property (philosophy)
0102 computer and information sciences
Combinatorics
Artificial Intelligence
FOS: Mathematics
Perfect matching
0101 mathematics
Hamiltonian graphs
Q measurement
Discrete mathematics
math.OC
Grafs
Teoria de

010102 general mathematics
Logic gates
Logic in Computer Science (cs.LO)
Graph theory
Computer Science - Computational Complexity
Optimization and Control (math.OC)
Integrated circuit modeling
Control and Systems Engineering
Software
MathematicsofComputing_DISCRETEMATHEMATICS
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Jun 2019, Vancouver, Canada. pp.1-13, ⟨10.1109/LICS.2019.8785792⟩
LICS
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
DOI: 10.1109/LICS.2019.8785792⟩
Popis: We consider families of symmetric linear programs (LPs) that decide a property of graphs (or other relational structures) in the sense that, for each size of graph, there is an LP defining a polyhedral lift that separates the integer points corresponding to graphs with the property from those corresponding to graphs without the property. We show that this is equivalent, with at most polynomial blow-up in size, to families of symmetric Boolean circuits with threshold gates. In particular, when we consider polynomial-size LPs, the model is equivalent to definability in a non-uniform version of fixed-point logic with counting (FPC). Known upper and lower bounds for FPC apply to the non-uniform version. In particular, this implies that the class of graphs with perfect matchings has polynomial-size symmetric LPs, while we obtain an exponential lower bound for symmetric LPs for the class of Hamiltonian graphs. We compare and contrast this with previous results (Yannakakis 1991), showing that any symmetric LPs for the matching and TSP polytopes have exponential size. As an application, we establish that for random, uniformly distributed graphs, polynomial-size symmetric LPs are as powerful as general Boolean circuits. We illustrate the effect of this on the well-studied planted-clique problem. First author partially funded by European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant agreement ERC-2014-CoG 648276 (AUTAR) and MICCIN grant TIN2016-76573-C2-1P (TASSAT3). The second author was partially supported by a Fellowship of the Alan Turing Institute under the EPSRC grant EP/N510129/1. The third author funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 795936.
Databáze: OpenAIRE