NORMALITY AND QUADRATICITY FOR SPECIAL AMPLE LINE BUNDLES ON TORIC VARIETIES ARISING FROM ROOT SYSTEMS
Autor: | Qëndrim R. Gashi, Travis Schedler |
---|---|
Rok vydání: | 2013 |
Předmět: |
Physics::Instrumentation and Detectors
General Mathematics Closure (topology) 0102 computer and information sciences 01 natural sciences Combinatorics Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry FOS: Mathematics Mathematics - Combinatorics Representation Theory (math.RT) 0101 mathematics Mathematics::Symplectic Geometry Algebraic Geometry (math.AG) Mathematics Conjecture Flag (linear algebra) 010102 general mathematics Toric variety Torus Algebra 010201 computation theory & mathematics Algebraic group Maximal torus Combinatorics (math.CO) Variety (universal algebra) Mathematics - Representation Theory |
Zdroj: | Glasgow Mathematical Journal. 55:113-134 |
ISSN: | 1469-509X 0017-0895 |
DOI: | 10.1017/s0017089513000542 |
Popis: | We prove that special ample line bundles on toric varieties arising from root systems are projectively normal. Here the maximal cones of the fans correspond to the Weyl chambers, and special means that the bundle is torus-equivariant such that the character of the line bundle that corresponds to a maximal Weyl chamber is dominant with respect to that chamber. Moreover, we prove that the associated semigroup rings are quadratic. Comment: 18 pages |
Databáze: | OpenAIRE |
Externí odkaz: |