Universal algorithms for computing spectra of periodic operators
Autor: | Jonathan Ben-Artzi, Marco Marletta, Frank Rösler |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Ben-Artzi, Jonathan; Marletta, Marco; Rösler, Frank (2022). Universal algorithms for computing spectra of periodic operators. Numerische Mathematik, 150(3), pp. 719-767. Springer 10.1007/s00211-021-01265-w |
ISSN: | 0029-599X |
DOI: | 10.1007/s00211-021-01265-w |
Popis: | Schr\"odinger operators with periodic (possibly complex-valued) potentials and discrete periodic operators (possibly with complex-valued entries) are considered, and in both cases the computational spectral problem is investigated: namely, under what conditions can a "one-size-fits-all" algorithm for computing their spectra be devised? It is shown that for periodic banded matrices this can be done, as well as for Schr\"odinger operators with periodic potentials that are sufficiently smooth. In both cases implementable algorithms are provided, along with examples. For certain Schr\"odinger operators whose potentials may diverge at a single point (but are otherwise well-behaved) it is shown that there does not exist such an algorithm, though it is shown that the computation is possible if one allows for two successive limits. Comment: 32 pages, 6 figures |
Databáze: | OpenAIRE |
Externí odkaz: |