κ-Minkowski-deformation of U(1) gauge theory
Autor: | P. Vitale, Vladislav G. Kupriyanov, Maxim Kurkov |
---|---|
Přispěvatelé: | Kupriyanov, V. G., Kurkov, M., Vitale, P. |
Rok vydání: | 2021 |
Předmět: |
High Energy Physics - Theory
Physics Nuclear and High Energy Physics 010308 nuclear & particles physics FOS: Physical sciences Mathematical Physics (math-ph) Gauge (firearms) 01 natural sciences Noncommutative geometry High Energy Physics::Theory High Energy Physics - Theory (hep-th) Gauge Symmetry Non-Commutative Geometry 0103 physical sciences Minkowski space lcsh:QC770-798 lcsh:Nuclear and particle physics. Atomic energy. Radioactivity Covariant transformation Gauge theory Limit (mathematics) 010306 general physics Commutative property Mathematical Physics Mathematical physics Gauge symmetry |
Zdroj: | Journal of High Energy Physics, Vol 2021, Iss 1, Pp 1-18 (2021) Journal of High Energy Physics |
ISSN: | 1029-8479 |
Popis: | We construct a non-commutative kappa-Minkowski deformation of U(1) gauge theory, following a general approach, recently proposed in JHEP 2008 (2020) 041. We obtain an exact (all orders in the non-commutativity parameter) expression for both the deformed gauge transformations and the deformed field strength, which is covariant under these transformations. The corresponding Yang-Mills Lagrangian is gauge covariant and reproduces the Maxwell Lagrangian in the commutative limit. Gauge invariance of the action functional requires a non-trivial integration measure which, in the commutative limit, does not reduce to the trivial one. We discuss the physical meaning of such a nontrivial commutative limit, relating it to a nontrivial space-time curvature of the undeformed theory. Moreover, we propose a rescaled kappa-Minkowski non-commutative structure, which exhibits a standard flat commutative limit. 18 pages, 2 figures, Comment and two references added |
Databáze: | OpenAIRE |
Externí odkaz: |