Global dataset on seagrass meadow structure, biomass and production

Autor: Simone Strydom, Roisin McCallum, Anna Lafratta, Chanelle L. Webster, Caitlyn M. O'Dea, Nicole E. Said, Natasha Dunham, Karina Inostroza, Cristian Salinas, Samuel Billinghurst, Charlie M. Phelps, Connor Campbell, Connor Gorham, Rachele Bernasconi, Anna M. Frouws, Axel Werner, Federico Vitelli, Viena Puigcorbé, Alexandra D'Cruz, Kathryn M. McMahon, Jack Robinson, Megan J. Huggett, Sian McNamara, Glenn A. Hyndes, Oscar Serrano
Přispěvatelé: Environmental Protection Authority, Edith Cowan University, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España)
Rok vydání: 2023
Předmět:
Zdroj: Earth System Science Data. 15:511-519
ISSN: 1866-3516
Popis: 9 pages, 6 figures, 1 table, supplement https://doi.org/10.5194/essd-15-511-2023-supplement.-- Data availability: Data are archived in the data repository PANGAEA (https://doi.org/10.1594/PANGAEA.929968) (Strydom et al., 2022).-- Code availability: R scripts used to generate figures and maps can be found in the Supplement
Seagrass meadows provide valuable socio-ecological ecosystem services, including a key role in climate change mitigation and adaption. Understanding the natural history of seagrass meadows across environmental gradients is crucial to deciphering the role of seagrasses in the global ocean. In this data collation, spatial and temporal patterns in seagrass meadow structure, biomass and production data are presented as a function of biotic and abiotic habitat characteristics. The biological traits compiled include measures of meadow structure (e.g. percent cover and shoot density), biomass (e.g. above-ground biomass) and production (e.g. shoot production). Categorical factors include bioregion, geotype (coastal or estuarine), genera and year of sampling. This dataset contains data extracted from peer-reviewed publications published between 1975 and 2020 based on a Web of Science search and includes 11 data variables across 12 seagrass genera. The dataset excludes data from mesocosm and field experiments, contains 14 271 data points extracted from 390 publications and is publicly available on the PANGAEA® data repository (https://doi.org/10.1594/PANGAEA.929968; Strydom et al., 2021). The top five most studied genera are Zostera, Thalassia, Cymodocea, Halodule and Halophila (84 % of data), and the least studied genera are Phyllospadix, Amphibolis and Thalassodendron (2.3 % of data). The data hotspot bioregion is the Tropical Indo-Pacific (25 % of data) followed by the Tropical Atlantic (21 %), whereas data for the other four bioregions are evenly spread (ranging between 13 and 15 % of total data within each bioregion). From the data compiled, 57 % related to seagrass biomass and 33 % to seagrass structure, while the least number of data were related to seagrass production (11 % of data). This data collation can inform several research fields beyond seagrass ecology, such as the development of nature-based solutions for climate change mitigation, which include readership interested in blue carbon, engineering, fisheries, global change, conservation and policy
Anna Lafratta was supported by Environmental Protection Authority (SA)/Water SA and Edith Cowan University (ECU) Industry Engagement Scholarship. Cristian Salinas was funded by ECU Higher Degree by Research Scholarship. Oscar Serrano was supported by I+D+i projects RYC2019-027073-I and PIE HOLOCENO 20213AT014 funded by MCIN/AEI/10.13039/501100011033 and FEDER
With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje