Commutators of Singular Integrals with Kernels Satisfying Generalized Hörmander Conditions and Extrapolation Results to the Variable Exponent Spaces
Autor: | Gladis Pradolini, Luciana Melchiori |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Variable exponent Matemáticas 010102 general mathematics COMMUTATORS Extrapolation EXTRAPOLATION Singular integral 01 natural sciences Potential theory Matemática Pura 010104 statistics & probability VARIABLE LEBESGUE SPACES 0101 mathematics CIENCIAS NATURALES Y EXACTAS Analysis Mathematics |
Zdroj: | Potential Analysis. 51:579-601 |
ISSN: | 1572-929X 0926-2601 |
DOI: | 10.1007/s11118-018-9726-2 |
Popis: | We obtain boundedness results for the higher order commutators of singular integral operators between weighted Lebesgue spaces, including Lp-BMO and Lp-Lipschitz estimates. The kernels of such operators satisfy certain regularity condition, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of singular integral operators with less regular kernels satisfying a Hörmander’s type inequality. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p. Finally, by extrapolation techniques, we derive different results in the variable exponent context. Fil: Melchiori, Luciana. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |