Localisation and transport in bidimensional random models with separable Hamiltonians
Autor: | Patrizia Vignolo, Gabino Corona-Patricio, Fabrice Mortessagne, Ulrich Kuhl, L. Tessieri |
---|---|
Přispěvatelé: | Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Institut de Physique de Nice (INPHYNI), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
General Physics and Astronomy Random model FOS: Physical sciences Disordered Systems and Neural Networks (cond-mat.dis-nn) Eigenfunction Condensed Matter - Disordered Systems and Neural Networks 16. Peace & justice 01 natural sciences Resonance (particle physics) 010305 fluids & plasmas Separable space 0103 physical sciences Polar coordinate system 010306 general physics ComputingMilieux_MISCELLANEOUS [PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] Variable (mathematics) Mathematical physics |
Zdroj: | New Journal of Physics New Journal of Physics, Institute of Physics: Open Access Journals, 2019, 21 (7), pp.073041. ⟨10.1088/1367-2630/ab2fd9⟩ |
ISSN: | 1367-2630 |
DOI: | 10.1088/1367-2630/ab2fd9⟩ |
Popis: | We consider two bidimensional random models characterised by the following features: a) their Hamiltonians are separable in polar coordinates and b) the random part of the potential depends either on the angular coordinate or on the radial one, but not on both. The disorder correspondingly localises the angular or the radial part of the eigenfunctions. We analyse the analogies and the differences which exist between the selected 2D models and their 1D counterparts. We show how the analogies allow one to use correlated disorder to design a localisation length with pre-defined energy dependence and to produce directional localisation of the wavefunctions in models with angular disorder. We also discuss the importance of finite-size and resonance effects in shaping the eigenfunctions of the model with angular disorder; for the model with disorder associated to the radial variable we show under what conditions the localisation length coincides with the expression valid in the 1D case. Comment: 54 pages, 20 figures |
Databáze: | OpenAIRE |
Externí odkaz: |