Element centered smooth artificial viscosity in discontinuous Galerkin method for propagation of acoustic shock waves on unstructured meshes
Autor: | Adrian Luca, Bharat B. Tripathi, François Coulouvrat, S. Baskar, Régis Marchiano |
---|---|
Přispěvatelé: | Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Modélisation, Propagation et Imagerie Acoustique (IJLRDA-MPIA), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Diffraction
Physics and Astronomy (miscellaneous) LIMITER NAVIER-STOKES EQUATIONS Classification of discontinuities 01 natural sciences COMPRESSIBLE EULER Acoustic shock Gibbs phenomenon symbols.namesake Nonlinear acoustics ADVECTIVE-DIFFUSIVE SYSTEMS Discontinuous Galerkin method 0103 physical sciences Discontinuous Galerkin Discontinous Galerkin Nonlinear acoustics 8 0101 mathematics 010301 acoustics FORMULATION Physics [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] Numerical Analysis Applied Mathematics Numerical analysis COMPUTATIONAL FLUID-DYNAMICS Mechanics OPERATOR Shock capturing Artificial viscosity Computer Science Applications Shock (mechanics) 010101 applied mathematics Computational Mathematics Modeling and Simulation HYPERBOLIC CONSERVATION-LAWS symbols PLANE-WAVES NUMERICAL-SIMULATION |
Zdroj: | Journal of Computational Physics Journal of Computational Physics, Elsevier, 2018, 366, pp.298-319. ⟨10.1016/j.jcp.2018.04.010⟩ |
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2018.04.010⟩ |
Popis: | This work aims at developing a high-order numerical method for the propagation of acoustic shock waves using the discontinuous Galerkin method. High order methods tend to amplify the formation of spurious oscillations (Gibbs phenomenon) around the discontinuities/shocks, associated to the relative importance of higher-harmonics resulting from nonlinear propagation (in our case). To handle this critical issue, a new shock sensor is introduced for the sub-cell shock capturing. Thereafter, an element-centered smooth artificial viscosity is introduced into the system wherever an acoustic shock wave is sensed. Validation tests in 1D and 2D configurations show that the method is well-suited for the propagation of acoustic shock waves along with other physical effects like geometrical spreading and diffraction. (C) 2018 Elsevier Inc. All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |