Element centered smooth artificial viscosity in discontinuous Galerkin method for propagation of acoustic shock waves on unstructured meshes

Autor: Adrian Luca, Bharat B. Tripathi, François Coulouvrat, S. Baskar, Régis Marchiano
Přispěvatelé: Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Modélisation, Propagation et Imagerie Acoustique (IJLRDA-MPIA), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Diffraction
Physics and Astronomy (miscellaneous)
LIMITER
NAVIER-STOKES EQUATIONS
Classification of discontinuities
01 natural sciences
COMPRESSIBLE EULER
Acoustic shock
Gibbs phenomenon
symbols.namesake
Nonlinear acoustics
ADVECTIVE-DIFFUSIVE SYSTEMS
Discontinuous Galerkin method
0103 physical sciences
Discontinuous Galerkin
Discontinous Galerkin
Nonlinear acoustics 8
0101 mathematics
010301 acoustics
FORMULATION
Physics
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
Numerical Analysis
Applied Mathematics
Numerical analysis
COMPUTATIONAL FLUID-DYNAMICS
Mechanics
OPERATOR
Shock capturing
Artificial viscosity
Computer Science Applications
Shock (mechanics)
010101 applied mathematics
Computational Mathematics
Modeling and Simulation
HYPERBOLIC CONSERVATION-LAWS
symbols
PLANE-WAVES
NUMERICAL-SIMULATION
Zdroj: Journal of Computational Physics
Journal of Computational Physics, Elsevier, 2018, 366, pp.298-319. ⟨10.1016/j.jcp.2018.04.010⟩
ISSN: 0021-9991
1090-2716
DOI: 10.1016/j.jcp.2018.04.010⟩
Popis: This work aims at developing a high-order numerical method for the propagation of acoustic shock waves using the discontinuous Galerkin method. High order methods tend to amplify the formation of spurious oscillations (Gibbs phenomenon) around the discontinuities/shocks, associated to the relative importance of higher-harmonics resulting from nonlinear propagation (in our case). To handle this critical issue, a new shock sensor is introduced for the sub-cell shock capturing. Thereafter, an element-centered smooth artificial viscosity is introduced into the system wherever an acoustic shock wave is sensed. Validation tests in 1D and 2D configurations show that the method is well-suited for the propagation of acoustic shock waves along with other physical effects like geometrical spreading and diffraction. (C) 2018 Elsevier Inc. All rights reserved.
Databáze: OpenAIRE