Theories and analyses of functionally graded circular plates
Autor: | J. N. Reddy, A. M. A. Neves, J.A. Loya, Eugenio Ruocco |
---|---|
Přispěvatelé: | Reddy, J. N., Ruocco, E., Loya, J. A., Neves, A. M. A. |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Couple stress
Materials science Functionally graded structure Rotational symmetry Modified couple stress Bending Analytical solutions Functionally graded material Numerical Results Physics::Fluid Dynamics Modified Couple Stress Circular Plates Circular plate Classical And Shear Deformation Theories Classical and shear deformation theorie Functionally graded structures Boundary value problem Modified couple stre Materials of engineering and construction. Mechanics of materials Ingeniería Mecánica Analytical solution Mechanical Engineering Functionally Graded Structures Mechanics Circular plates Nonlinear system Mechanics of Materials Ceramics and Composites Classical and shear deformation theories Numerical results TA401-492 Analytical Solutions |
Zdroj: | Composites Part C: Open Access, Vol 5, Iss, Pp 100166-(2021) e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid instname |
ISSN: | 2666-6820 |
Popis: | This paper presents the governing equations and analytical solutions of the classical and shear deformation theories of functionally graded axisymmetric circular plates. The classical, first-order, and third-order shear deformation theories are presented, accounting for through-thickness variation of two-constituent functionally graded material, modified couple stress effect, and the von Karman nonlinearity. Analytical solutions for bending of the linear theories, some of which are not readily available in the literature, are included to show the influence of the material variation, boundary conditions, and loads. |
Databáze: | OpenAIRE |
Externí odkaz: |