Transport in the barrier billiard
Jazyk: | English |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.93.062216⟩ |
Přístupová URL adresa: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::74149d74e48eed3a96081fe682c59970 https://hal.science/hal-03729655 |
Rights: | CLOSED |
Přírůstkové číslo: | edsair.doi.dedup.....74149d74e48eed3a96081fe682c59970 |
Autor: | Wahb Ettoumi, Maurice Courbage, Seyed Majid Saberi Fathi |
Přispěvatelé: | Department of Physics, University of Sistan and Baluchestan, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Matière et Systèmes Complexes (MSC), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Physics
Anomalous diffusion Mathematical analysis Autocorrelation Second moment of area Observable 01 natural sciences 010305 fluids & plasmas Bounded function 0103 physical sciences Ergodic theory Dynamical billiards 010306 general physics [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] Mixing (physics) |
Zdroj: | Physical Review E Physical Review E, 2016, 93, ⟨10.1103/PhysRevE.93.062216⟩ |
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.93.062216⟩ |
Popis: | International audience; We investigate transport properties of an ensemble of particles moving inside an infinite periodic horizontal planar barrier billiard. A particle moves among bars and elastically reflects on them. The motion is a uniform translation along the bars' axis. When the tangent of the incidence angle, alpha , is fixed and rational, the second moment of the displacement along the orthogonal axis at time n , , is either bounded or asymptotic to K n2 , when n -->∞ . For irrational alpha , the collision map is ergodic and has a family of weakly mixing observables, the transport is not ballistic, and autocorrelation functions decay only in time average, but may not decay for a family of irrational alpha 's. An exhaustive numerical computation shows that the transport may be superdiffusive or subdiffusive with various rates or bounded strongly depending on the values of alpha . The variety of transport behaviors sounds reminiscent of well-known behavior of conservative systems. Considering then an ensemble of particles with nonfixed alpha , the system is nonergodic and certainly not mixing and has anomalous diffusion with self-similar space-time properties. However, we verified that such a system decomposes into ergodic subdynamics breaking self-similarity. |
Databáze: | OpenAIRE |
Externí odkaz: |