Optimal Control for a Groundwater Pollution Ruled by a Convection–Diffusion–Reaction Problem
Autor: | Eloïse Comte, Catherine Choquet, Emmanuelle Augeraud-Véron |
---|---|
Přispěvatelé: | Université de La Rochelle (ULR), Mathématiques, Image et Applications - EA 3165 (MIA), Groupe de Recherche en Economie Théorique et Appliquée (GREThA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2016 |
Předmět: |
0209 industrial biotechnology
Mathematical optimization Control and Optimization Aquifer 02 engineering and technology Management Science and Operations Research 01 natural sciences 020901 industrial engineering & automation Groundwater pollution [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Nonlinearly coupled problem Boundary value problem Optimal control problem [MATH]Mathematics [math] 0101 mathematics Global existence Mathematics geography geography.geographical_feature_category Hydrogeology [QFIN]Quantitative Finance [q-fin] Fixed point theorem Applied Mathematics 010102 general mathematics Hydrogeological state equations Optimal control problem Hydrogeological state equations Nonlinearly coupled problem Parabolic and elliptic PDEs Global existence Fixed point theorem Optimal control Parabolic partial differential equation 6. Clean water Controllability 13. Climate action Parabolic and elliptic PDEs [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] Convection–diffusion equation |
Zdroj: | Journal of Optimization Theory and Applications Journal of Optimization Theory and Applications, Springer Verlag, 2016, 173 (3), pp.941-966. ⟨10.1007/s10957-016-1017-8⟩ Journal of Optimization Theory and Applications, Springer Verlag, In press, 173 (3), pp.941-966 Journal of Optimization Theory and Applications, Springer Verlag, 2016, ⟨10.1007/s10957-016-1017-8⟩ |
ISSN: | 1573-2878 0022-3239 |
DOI: | 10.1007/s10957-016-1017-8 |
Popis: | International audience; We consider an optimal control problem of underground water contaminated by agricultural pollution. The economical intertemporal objective takes into account the trade-off between fertilizer use and cleaning costs. It is constrained by a hydrogeological model for the spread of the pollution in the aquifer. This model consists in a parabolic partial differential equation which is nonlinearly coupled through the dispersion tensor with an elliptic equation, in a three-dimensional domain. We prove the existence of a global optimal solution under various regularity assumptions and for a wide variety of boundary conditions. We also provide an asymptotic controllability result. |
Databáze: | OpenAIRE |
Externí odkaz: |