Uniform convergence of penalized time-inhomogeneous Markov processes

Autor: Nicolas Champagnat, Denis Villemonais
Přispěvatelé: TO Simulate and CAlibrate stochastic models (TOSCA), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Statistics and Probability
uniform exponential mixing
Statistics::Theory
Uniform convergence
Markov process
one-dimensional diffusions with absorption
01 natural sciences
time-inhomogeneous Markov processes
Statistics::Machine Learning
010104 statistics & probability
symbols.namesake
Exponential stability
Dobrushin's ergodic coefficient
FOS: Mathematics
Statistics::Methodology
Applied mathematics
0101 mathematics
Contraction (operator theory)
Mathematics
asymptotic stability
010102 general mathematics
Probability (math.PR)
penalized processes
Feynman–Kac formula
Probability and statistics
Feynman-Kac formula
birth and death processes in random environment with killing
Birth–death process
Statistics::Computation
Exponential function
MSC: Primary: 60B10
60F99
60J57
37A25. Secondary: 60J60
60J27
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
symbols
Mathematics - Probability
Zdroj: ESAIM: Probability and Statistics
ESAIM: Probability and Statistics, 2018, 22, pp.129-162. ⟨10.1051/ps/2017022⟩
ESAIM: Probability and Statistics, EDP Sciences, 2018, 22, pp.129-162. ⟨10.1051/ps/2017022⟩
ISSN: 1292-8100
1262-3318
DOI: 10.1051/ps/2017022⟩
Popis: We provide a general criterion ensuring the exponential contraction of Feynman–Kac semi-groups of penalized processes. This criterion applies to time-inhomogeneous Markov processes with absorption and killing through penalization. We also give the asymptotic behavior of the expected penalization and provide results of convergence in total variation of the process penalized up to infinite time. For exponential convergence of penalized semi-groups with bounded penalization, a converse result is obtained, showing that our criterion is sharp in this case. Several cases are studied: we first show how our criterion can be simply checked for processes with bounded penalization, and we then study in detail more delicate examples, including one-dimensional diffusion processes conditioned not to hit 0 and penalized birth and death processes evolving in a quenched random environment.
Databáze: OpenAIRE