Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

Autor: M Zimmer, T Wiersberg, K Weaver, R Valdez, H Tobin, D Teagle, S Taylor-Offord, N Shigematsu, A Schleicher, Martha Savage, K Sauer, DJ Prior, J Paris, O Nitsch, O Nishikawa, A Niemeijer, H Mori, L Morales, J Moore, C Menzies, B Melosh, L Mathewson, E Mariani, D Mallyon, A Lukacs, T Little, W Lin, R Langridge, Y Kometani, M Kirilova, S Keys, N Kato, K Jacobs, Jamie Howarth, G Henry, A Hartog, A Gulley, J Grochowski, J Grieve, D Faulkner, JD Eccles, L Craw, SC Cox, A Coutts, A Cooper, Calum Chamberlain, B Carpenter, N Broderick, Carolyn Boulton, CM Boese, L Becroft, N Barth, LM Baratin, MJ Allen, J Williams, P Pezard, DR Schmitt, P Upton, L Remaud, L Janku-Capova, T Jeppson, J Coussens, C Massiot, B Célérier, ML Doan, VG Toy, Rupert Sutherland, John Townend
Přispěvatelé: Victoria University of Wellington, University of Otago [Dunedin, Nouvelle-Zélande], Institut des Sciences de la Terre (ISTerre), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), GNS Science [Lower Hutt], GNS Science, Université Grenoble Alpes - UFR Langage, lettres et arts du spectacle, information et communication - Dpt Sciences de l'information et de la communication (UGA UFR LLASIC SIC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de Mécanique des Fluides et des Solides (IMFS), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Centre National de la Recherche Scientifique (CNRS), Institute of Mathematical, Physics and Computer Sciences (IMAPCS), Aberystwyth University, Institute of Geological and Nuclear Sciences (IGNS), Department of Geoscience, University of Wisconsin-Madison, Department of Geosciences [Pennsylvania], Pennsylvania State University (Penn State), Penn State System-Penn State System, GeoForschungsZentrum - Helmholtz-Zentrum Potsdam (GFZ), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Experimental rock deformation
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Geochemistry Geophysics Geosystems (G3)
Geochemistry, Geophysics, Geosystems
Geochemistry, Geophysics, Geosystems, AGU and the Geochemical Society, 2017, 18 (12), pp.4709-4732. ⟨10.1002/2017GC007202⟩
Geochemistry, Geophysics, Geosystems, 2017, 18 (12), pp.4709-4732. ⟨10.1002/2017GC007202⟩
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Geochemistry, geophysics, geosystems, 2017, Vol.18(12), pp.4709-4732 [Peer Reviewed Journal]
ISSN: 1525-2027
DOI: 10.1002/2017GC007202⟩
Popis: © 2017. American Geophysical Union. All Rights Reserved. Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (∼10−9 to 10−7 m/s, corresponding to permeability of ∼10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.
Databáze: OpenAIRE