Partially hyperbolic surface endomorphisms
Autor: | Layne Hall, Andy Hammerlindl |
---|---|
Rok vydání: | 2018 |
Předmět: |
Class (set theory)
Pure mathematics Endomorphism Mathematics::Dynamical Systems Mathematics::Operator Algebras Applied Mathematics General Mathematics Mathematics::Rings and Algebras Dynamical Systems (math.DS) Surface (topology) Foliation 37C05 37D30 57R30 FOS: Mathematics Mathematics - Dynamical Systems Mathematics |
DOI: | 10.48550/arxiv.1811.08977 |
Popis: | We prove that a class of weakly partially hyperbolic endomorphisms on $\mathbb{T}^2$ are dynamically coherent and leaf conjugate to linear toral endomorphisms. Moreover, we give an example of a partially hyperbolic endomorphism on $\mathbb{T}^2$ which does not admit a centre foliation. Comment: 13 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |