A $q$-EXTENSION OF THE ERKUS-SRIVASTAVA POLYNOMIALS IN SEVERAL VARIABLES
Autor: | Esra Erkus¸-Duman |
---|---|
Rok vydání: | 2008 |
Předmět: |
Discrete mathematics
33D50 General Mathematics Discrete orthogonal polynomials addition formula Lagrange-Hermite polynomials Lagrange polynomials Chan-Chyan-Srivastava polynomials 33C45 Classical orthogonal polynomials generating function Macdonald polynomials Difference polynomials Orthogonal polynomials Hahn polynomials Wilson polynomials Koornwinder polynomials Mathematics |
Zdroj: | Taiwanese J. Math. 12, no. 2 (2008), 539-543 |
ISSN: | 1027-5487 |
DOI: | 10.11650/twjm/1500574174 |
Popis: | Recently, Erkus and Srivastava [Integral Transform. Spec. Funct.\textit{\ }% 174 (2006), 267-273] have introduced and systematically investigated a unified presentation of some families of multivariable polynomials. In this paper, we study a basic (or $q-$) analogue of these polynomials, which we construct here. |
Databáze: | OpenAIRE |
Externí odkaz: |