Parabolic induction in characteristic p
Autor: | Rachel Ollivier, Marie-France Vignéras |
---|---|
Rok vydání: | 2018 |
Předmět: |
Hecke algebra
Functor Mathematics - Number Theory 11E95 20G25 20C08 22E50 General Mathematics 010102 general mathematics General Physics and Astronomy Commutative ring Reductive group Unipotent 01 natural sciences Combinatorics 0103 physical sciences FOS: Mathematics Parabolic induction Number Theory (math.NT) 010307 mathematical physics Locally compact space Representation Theory (math.RT) 0101 mathematics Algebraically closed field Mathematics::Representation Theory Mathematics - Representation Theory Mathematics |
Zdroj: | Selecta Mathematica. 24:3973-4039 |
ISSN: | 1420-9020 1022-1824 |
DOI: | 10.1007/s00029-018-0440-0 |
Popis: | Let $$\mathrm{F}$$ (resp. $$\mathbb F$$ ) be a nonarchimedean locally compact field with residue characteristic p (resp. a finite field with characteristic p). For $$k=\mathrm{F}$$ or $$k=\mathbb F$$ , let $$\mathbf {G}$$ be a connected reductive group over k and R be a commutative ring. We denote by $$\mathrm{Rep}( \mathbf G(k)) $$ the category of smooth R-representations of $$ \mathbf G(k) $$ . To a parabolic k-subgroup $${\mathbf P}=\mathbf {MN}$$ of $$\mathbf G$$ corresponds the parabolic induction functor $$\mathrm{Ind}_{\mathbf P(k)}^{\mathbf G(k)}:\mathrm{Rep}( \mathbf M(k)) \rightarrow \mathrm{Rep}( \mathbf G(k))$$ . This functor has a left and a right adjoint. Let $${{\mathcal {U}}}$$ (resp. $${\mathbb {U}}$$ ) be a pro-p Iwahori (resp. a p-Sylow) subgroup of $$ \mathbf G(k) $$ compatible with $${\mathbf P}(k)$$ when $$k=\mathrm{F}$$ (resp. $$\mathbb F$$ ). Let $${H_{ \mathbf G(k)}}$$ denote the pro-p Iwahori (resp. unipotent) Hecke algebra of $$ \mathbf G(k) $$ over R and $$\mathrm{Mod}({H_{ \mathbf G(k)}})$$ the category of right modules over $${H_{ \mathbf G(k)}}$$ . There is a functor $$\mathrm{Ind}_{{H_{ \mathbf M(k)}}}^{{H_{ \mathbf G(k)}}}: \mathrm{Mod}({H_{ \mathbf M(k)}}) \rightarrow \mathrm{Mod}({H_{ \mathbf G(k) }})$$ called parabolic induction for Hecke modules; it has a left and a right adjoint. We prove that the pro-p Iwahori (resp. unipotent) invariant functors commute with the parabolic induction functors, namely that $$\mathrm{Ind}_{\mathbf P(k)}^{\mathbf G(k)}$$ and $$\mathrm{Ind}_{{H_{ \mathbf M(k)}}}^{{H_{ \mathbf G(k)}}}$$ form a commutative diagram with the $${{\mathcal {U}}}$$ and $${{\mathcal {U}}}\cap \mathbf M(\mathrm{F})$$ (resp. $${\mathbb {U}}$$ and $${\mathbb {U}}\cap \mathbf M(\mathbb F) $$ ) invariant functors. We prove that the pro-p Iwahori (resp. unipotent) invariant functors also commute with the right adjoints of the parabolic induction functors. However, they do not commute with the left adjoints of the parabolic induction functors in general; they do if p is invertible in R. When R is an algebraically closed field of characteristic p, we show that an irreducible admissible R-representation of $$ \mathbf G(\mathrm{F}) $$ is supercuspidal (or equivalently supersingular) if and only if the $${H_{ \mathbf G(\mathrm{F})}}$$ -module $${\mathfrak {m}}$$ of its $${{\mathcal {U}}}$$ -invariants admits a supersingular subquotient, if and only if $${\mathfrak {m}}$$ is supersingular. |
Databáze: | OpenAIRE |
Externí odkaz: |