Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides
Autor: | Harry B. Radousky, Marco Mehl, Jonathan C. Crowhurst, Scott W. Wagnon, Joseph M. Zaug, Z. Dai, Batikan Koroglu, Michael R. Armstrong, Timothy P. Rose, David Weisz |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Materials science
Nucleation Oxide chemistry.chemical_element lcsh:Medicine 02 engineering and technology 01 natural sciences Redox Chemical reaction Article chemistry.chemical_compound Condensed Matter::Materials Science lcsh:Science Multidisciplinary 010401 analytical chemistry Condensation lcsh:R Atomic emission spectroscopy Monoxide Uranium 021001 nanoscience & nanotechnology 0104 chemical sciences chemistry Chemical engineering lcsh:Q 0210 nano-technology |
Zdroj: | Scientific Reports, Vol 8, Iss 1, Pp 1-15 (2018) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-018-28674-6 |
Popis: | We use a recently developed plasma-flow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-Al2O3, UO2, and alpha-UO3) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |