Improvement of a recombinant antibody-based serological assay for foot-and-mouth disease virus
Autor: | Michelle Wilkins, Janine D. Muller, Hans G. Heine, Olan Dolezal, Meng Yu, Lin-Fa Wang, Adam J. Foord |
---|---|
Rok vydání: | 2010 |
Předmět: |
IPTG
isopropyl-beta-D-thiogalactoside Cost-Benefit Analysis Recombinant Fusion Proteins viruses Epitope mapping Immunology C-ELISA competition enzyme-linked immunosorbent assay Enzyme-Linked Immunosorbent Assay DIVA test Viral Nonstructural Proteins Antibodies Viral Protein Engineering Binding Competitive Article GST glutathione S-transferase scFv Virus Epitope FMDV PCR polymerase chain reaction SARS Severe Acute Respiratory Syndrome Alkaline phosphatase DIVA differentiation of infected from vaccinated animals Animals Immunology and Allergy Serologic Tests CRAb chicken recombinant antibody PAGE polyacrylamide gel electrophoresis Aphthovirus biology Reproducibility of Results Viral Vaccines scFv single chain variable fragment biology.organism_classification Virology Fusion protein Diva AP alkaline phosphatase Foot-and-Mouth Disease Virus Foot-and-Mouth Disease IBDV infectious bursal disease virus biology.protein FMDV foot-and-mouth disease virus Binding Sites Antibody Foot-and-mouth disease virus Antibody |
Zdroj: | Journal of Immunological Methods |
ISSN: | 0022-1759 |
DOI: | 10.1016/j.jim.2009.11.004 |
Popis: | Differentiating foot-and-mouth disease virus (FMDV) antibodies generated during a natural infection from those due to vaccination (DIVA) is crucial for proving freedom from disease after an outbreak and allowing resumption of trade in livestock products. The World Organisation for Animal Health (OIE) recommends that FMDV vaccines are composed of inactivated virus that has been purified to remove non-structural viral proteins. Such purified vaccines primarily induce antibodies to viral structural proteins, whereas replicating virus stimulates host antibodies specific for both structural and non-structural proteins. The current preferred FMDV DIVA test is a competitive ELISA (C-ELISA) designed to detect antibodies to the non-structural protein 3ABC. Previously, we described the development of an FMDV DIVA test based entirely on recombinant proteins (the recombinant detecting antibody and the 3ABC coating antigen) produced in Escherichia coli. In this study, we have determined the precise binding site of the recombinant detecting antibody to a conserved sequence within the 3B region of the 3ABC protein, replaced the original E-tag of the detecting antibody with two in-house tags and engineered a direct antibody-reporting enzyme (alkaline phosphatase) fusion protein. These modifications have further improved the DIVA test, providing great potential for large scale production and uptake due to its simplicity, reproducibility and low cost. |
Databáze: | OpenAIRE |
Externí odkaz: |