Non-Hermitian physics for optical manipulation uncovers inherent instability of large clusters

Autor: Xiao Li, Jack C. Ng, Yineng Liu, Zhifang Lin, Che Ting Chan
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
Nature Communications
ISSN: 2041-1723
Popis: Intense light traps and binds small particles, offering unique control to the microscopic world. With incoming illumination and radiative losses, optical forces are inherently nonconservative, thus non-Hermitian. Contrary to conventional systems, the operator governing time evolution is real and asymmetric (i.e., non-Hermitian), which inevitably yield complex eigenvalues when driven beyond the exceptional points, where light pumps in energy that eventually “melts” the light-bound structures. Surprisingly, unstable complex eigenvalues are prevalent for clusters with ~10 or more particles, and in the many-particle limit, their presence is inevitable. As such, optical forces alone fail to bind a large cluster. Our conclusion does not contradict with the observation of large optically-bound cluster in a fluid, where the ambient damping can take away the excess energy and restore the stability. The non-Hermitian theory overturns the understanding of optical trapping and binding, and unveils the critical role played by non-Hermiticity and exceptional points, paving the way for large-scale manipulation.
Non-conservativeness plays a mysterious role in optical trapping. Applying the non-Hermitian theory, the authors showed that the existence of exceptional points drives the Lorentz force to lose its ability to bind clusters of ~10 or more microparticles, unless remedied by dissipative forces.
Databáze: OpenAIRE