In vivo dihydrotachysterol2 metabolism in normal man: 1 alpha- and 1 beta-hydroxylation of 25-hydroxydihydrotachysterol2 and effects on plasma parathyroid hormone and 1 alpha,25-dihydroxyvitamin D3 concentrations
Autor: | Neil J. Schroeder, D.J.H. Trafford, Glenville Jones, John Cunningham, Hugh L.J. Makin |
---|---|
Rok vydání: | 1994 |
Předmět: |
Male
medicine.medical_specialty Endocrinology Diabetes and Metabolism Metabolite Clinical Biochemistry Administration Oral Alpha (ethology) Parathyroid hormone Hydroxylation Biochemistry Gas Chromatography-Mass Spectrometry Mass Spectrometry chemistry.chemical_compound Endocrinology Calcitriol Reference Values In vivo Internal medicine medicine Humans Beta (finance) Biotransformation Chromatography High Pressure Liquid Calcium metabolism Biochemistry (medical) chemistry Parathyroid Hormone Dihydrotachysterol Alkaline phosphatase Calcium Female medicine.drug |
Zdroj: | The Journal of Clinical Endocrinology & Metabolism. 78:1481-1487 |
ISSN: | 1945-7197 0021-972X |
DOI: | 10.1210/jcem.78.6.8200953 |
Popis: | It has recently been shown that in the rat, dihydrotachysterol (DHT) is extensively metabolized in the side-chain in vivo along pathways similar to those of vitamin D. In addition 25-hydroxy-DHT2 [25OHDHT2] is hydroxylated at C1, producing both 1 alpha- and 1 beta- hydroxy compounds. An in vivo study in 1988 demonstrated that in normal adult subjects receiving oral DHT2, plasma 1 alpha,25-dihydroxyvitamin D [1,25-(OH)2D] concentrations fell, but with unchanged plasma PTH levels. Down-regulation of 1,25-(OH)2D3 production by 25-(OH)DHT2 or some other unknown metabolite was also suggested as an explanation for these observations. To investigate whether either of the newly characterized 1 alpha,25- or 1 beta,25-(OH)2DHT2 was formed in vivo in normal man, DHT2 (approximately 1 mg/day, orally) was administered to healthy volunteers (three males and one female). Plasma was analyzed by high performance liquid chromatography and gas chromatography-mass spectrometry, demonstrating the formation of both 1 alpha,25- and 1 beta,25-(OH)2DHT2 in vivo in normal human subjects. Plasma levels of 1,25-(OH)2D3, PTH, ionized and total calcium, inorganic phosphate, and alkaline phosphatase were monitored. The plasma concentrations of DHT2, 25OHDHT2, and 1 alpha,25- and 1 beta,25-(OH)2DHT2 were measured by gas chromatography-mass spectrometry. In all volunteers, plasma ionized calcium increased slightly during DHT2 administration; 1,25-(OH)2D3 and PTH concentrations fell. Plasma levels of DHT2 and its metabolites rose over the same period. The average fall in the level of plasma 1,25-(OH)2D (60-70 pmol/L) was mirrored by a rise in the concentration of 1 alpha,25-(OH)2DHT2 (550 pmol/L). This ratio is appropriate, because it has previously been shown that in a reconstituted COS cell, 1 alpha,25-(OH)2DHT3 has roughly one tenth the potency of 1,25-(OH)2D3. At maximum concentration, the ratios of DHT2/25OHDHT2/1 beta,25-(OH)2DHT2/1 alpha,25-(OH)2DHT2 were approximately 10:1:2:0.1. The concentration of 1 beta,25-(OH)2DHT2 was greater than that of 25OHDHT2, and the ratio of 1 alpha,25- to 1 beta,25-(OH)2DHT2 (1:20) was substantially lower than that in rat plasma (3:10). The data presented here suggest that the active DHT2 metabolite in man is 1 alpha,25-(OH)2DHT2 and that the fall in plasma 1,25-(OH)2D seen during DHT therapy may be partly the result of suppressed PTH secretion. |
Databáze: | OpenAIRE |
Externí odkaz: |