The local discontinuous Galerkin method for convection-diffusion-fractional anti-diffusion equations

Autor: Nour Seloula, Afaf Bouharguane
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Applied Numerical Mathematics
Applied Numerical Mathematics, Elsevier, 2020, 148, pp.61-78. ⟨10.1016/j.apnum.2019.09.001⟩
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2019.09.001⟩
Popis: In this paper, we consider the discontinuous Galerkin method for solving time dependent partial differential equations with convection-diffusion terms and anti-diffusive fractional operator of order α ∈ ( 1 , 2 ) . These equations are motivated by two distinct applications: a dune morphodynamics model and a signal filtering model. The key to study these numerical schemes is to split the anti-diffusive operators into a singular and non-singular integral representations. The problem is then expressed as a system of low order differential equations and a local discontinuous Galerkin method is proposed for these equations. We prove nonlinear stability estimates and optimal order of convergence O ( Δ x k + 1 ) for linear equations and an order of convergence of O ( Δ x k + 1 2 ) for the nonlinear problem. Finally numerical experiments are given to illustrate qualitative behaviors of solutions for both applications and to confirme our convergence results.
Databáze: OpenAIRE