The influence of net ground reaction force orientation on mediolateral stability during walking
Autor: | Yash Rawal, Jonathan C. Singer |
---|---|
Rok vydání: | 2020 |
Předmět: |
medicine.medical_specialty
media_common.quotation_subject Biophysics Kinematics Walking Instability 03 medical and health sciences 0302 clinical medicine Physical medicine and rehabilitation Gait (human) Orientation (geometry) medicine Humans Orthopedics and Sports Medicine 030212 general & internal medicine Ground reaction force Eccentricity (behavior) Gait Postural Balance Mathematics media_common Foot Rehabilitation Work (physics) Biomechanical Phenomena Electronic stability control human activities 030217 neurology & neurosurgery |
Zdroj: | Gaitposture. 90 |
ISSN: | 1879-2219 |
Popis: | Background Previous work has linked the eccentricity of the net ground reaction force (GRFnet) to increased mediolateral instability during single-step voluntary and compensatory stepping responses. The present work sought to understand the extent to which such control mechanisms for mediolateral stability are present during gait. Research question How do gait velocity and step width constraints influence the kinetic control of mediolateral stability control among healthy participants? Methods 25 participants performed three walking conditions – normal walking with self-selected speed and foot-placement, fast walking with self-selected foot-placement, and narrowbase walking – across a 10-meter walkway. Lateral instability was quantified by the mediolateral margin of stability (MoSML). The frontal-plane eccentricity of the GRFnet was calculated as the difference between GRFnet vector orientation and that of a line joining the coordinates of COPnet and COM. Two discrete time-points (P1 and P2) following foot-contact were examined, as they have been suggested to be indicative of proactive and reactive COM control, respectively. Task-related differences in the magnitude and timing of kinematic and kinetic outcome variables were analysed using one-way ANOVAs with repeated-measures. Results With constraints on step-width in narrow-base walking, participants exhibited reduced stability as evidenced by reduced MoSML, alongside reductions in the peak GRFnet eccentricity (θd) at P1. Participants exhibited no reduction in stability during fast walking, as revealed by the MoSML in part because of a similar onset of P1 within the gait cycle. P2 magnitude was larger in narrow-base walking relative to fast-walking, and occurred at an earlier point in the gait cycle. Significance Findings suggest proactive mechanisms (i.e. P1) may predominantly regulate mediolateral stability during walking. Reactive mechanisms (i.e. P2), however, may be capable of offsetting instability in situations where proactive mechanisms are insufficient. |
Databáze: | OpenAIRE |
Externí odkaz: |