Maxwell-Bloch modeling of an x-ray pulse amplification in a one-dimensional photonic crystal

Autor: Philippe Jonnard, Jean-Michel André, Olivier Peyrusse
Přispěvatelé: Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Physical Review A : Atomic, molecular, and optical physics [1990-2015]
Physical Review A : Atomic, molecular, and optical physics [1990-2015], 2021, 103, pp.043508. ⟨10.1103/PhysRevA.103.043508⟩
Physical Review A
Physical Review A, American Physical Society, 2021, 103, pp.043508. ⟨10.1103/PhysRevA.103.043508⟩
ISSN: 1050-2947
1094-1622
Popis: International audience; We present an implementation of the Maxwell-Bloch (MB) formalism for the study of x-ray emission dynamics from periodic multilayer materials whether they are artificial or natural. The treatment is based on a direct Finite-Difference-Time-Domain (FDTD) solution of Maxwell equations combined with Bloch equations incorporating a random spontaneous emission noise. Besides periodicity of the material, the treatment distinguishes between two kinds of layers, those being active (or resonant) and those being off-resonance. The numerical model is applied to the problem of Kα emission in multilayer materials where the population inversion could be created by fast inner-shell photoionization by an x-ray free-electron-laser (XFEL). Specificities of the resulting amplified fluorescence in conditions of Bragg diffraction is illustrated by numerical simulations. The corresponding pulses could be used for specific investigations of non-linear interaction of x-rays with matter.
Databáze: OpenAIRE