Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks

Autor: Emmanuel L. Barbier, Audrey Bouchet, Enam A. Khalil, Cécile Maisin, Géraldine Le Duc, Chantal Rémy, Jean A. Laissue, Elke Bräuer-Krisch, E.A. Siegbahn, Alberto Bravin, Benjamin Lemasson, Raphaël Serduc, Luc Renaud, Cathy Poillot
Přispěvatelé: Bouchet, A, Lemasson, B, Le Duc, G, Maisin, C, Brauer-Krisch, E, Siegbahn Erik, A, Renaud, L, Khalil, E, Remy, C, Poillot, C, Bravin, A, Laissue Jean, A, Barbier Emmanuel, L, Serduc, R, European Synchrotron Radiation Facility (ESRF), Grenoble Institut des Neurosciences (GIN), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Santé et de la Recherche Médicale (INSERM), Oncodesign [Dijon], Department of Medical Physics, Karolinska Hospital, Centre de recherche cerveau et cognition (CERCO), Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Faculty of Pharmacy, The University of Jordan (JU), Oncology - Pathology - Anatomy, Institute of Pathology-University of Bern, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Dojat, Michel
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Vascular Endothelial Growth Factor A
Cancer Research
Pathology
MESH: Tumor Burden
MESH: Brain Edema
Synchrotron Microbeam radiation therapy/intracerebral 9L gliosarcoma/tumor vasculature
Synchrotron Microbeam radiation therapy
medicine.medical_treatment
Brain Edema
Radiation Tolerance
MESH: Cerebral Veins
030218 nuclear medicine & medical imaging
MESH: Magnetic Resonance Imaging
chemistry.chemical_compound
0302 clinical medicine
MESH: Animals
MESH: Radiotherapy Dosage
MESH: Cerebral Arteries
Radiation
MESH: Radiation Tolerance
Brain Neoplasms
Brain
Radiotherapy Dosage
MESH: Cerebrovascular Circulation
Magnetic Resonance Imaging
Tumor Burden
Vascular endothelial growth factor
medicine.anatomical_structure
Oncology
030220 oncology & carcinogenesis
Cerebrovascular Circulation
Circulatory system
MESH: Brain Neoplasms
MESH: Synchrotrons
Immunohistochemistry
[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
Sarcoma
Monte Carlo Method
Blood vessel
medicine.medical_specialty
Gliosarcoma
Endothelium
MESH: Rats
FIS/07 - FISICA APPLICATA (A BENI CULTURALI
AMBIENTALI
BIOLOGIA E MEDICINA)

MESH: Monte Carlo Method
Capillary Permeability
03 medical and health sciences
MESH: Brain
Intracerebral 9L gliosarcoma
medicine
Animals
Radiology
Nuclear Medicine and imaging

[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]
business.industry
MESH: Rats
Inbred F344

MESH: Vascular Endothelial Growth Factor A
MESH: Capillary Permeability
Cerebral Arteries
medicine.disease
Cerebral Veins
Rats
Inbred F344

Rats
Radiation therapy
tumor vasculature
chemistry
MESH: Gliosarcoma
business
Nuclear medicine
Synchrotrons
Zdroj: International Journal of Radiation Oncology-Biology-Physics
International Journal of Radiation Oncology-Biology-Physics, Elsevier, 2010, 78 (5), pp.1503-12. ⟨10.1016/j.ijrobp.2010.06.021⟩
International Journal of Radiation Oncology, Biology, Physics
International Journal of Radiation Oncology, Biology, Physics, 2010, 78 (5), pp.1503-12. ⟨10.1016/j.ijrobp.2010.06.021⟩
ISSN: 0360-3016
1879-355X
DOI: 10.1016/j.ijrobp.2010.06.021⟩
Popis: International audience; PURPOSE: Synchrotron microbeam radiation therapy (MRT) relies on spatial fractionation of the incident photon beam into parallel micron-wide beams. Our aim was to analyze the effects of MRT on normal brain and 9L gliosarcoma tissues, particularly on blood vessels. METHODS AND MATERIALS: Responses to MRT (two arrays, one lateral, one anteroposterior (2 × 400 Gy), intersecting orthogonally in the tumor region) were studied during 6 weeks using MRI, immunohistochemistry, and vascular endothelial growth factor Western blot. RESULTS: MRT increased the median survival time of irradiated rats (×3.25), significantly increased blood vessel permeability, and inhibited tumor growth; a cytotoxic effect on 9L cells was detected 5 days after irradiation. Significant decreases in tumoral blood volume fraction and vessel diameter were measured from 8 days after irradiation, due to loss of endothelial cells in tumors as detected by immunochemistry. Edema was observed in the normal brain exposed to both crossfired arrays about 6 weeks after irradiation. This edema was associated with changes in blood vessel morphology and an overexpression of vascular endothelial growth factor. Conversely, vascular parameters and vessel morphology in brain regions exposed to one of the two arrays were not damaged, and there was no loss of vascular endothelia. CONCLUSIONS: We show for the first time that preferential damage of MRT to tumor vessels versus preservation of radioresistant normal brain vessels contributes to the efficient palliation of 9L gliosarcomas in rats. Molecular pathways of repair mechanisms in normal and tumoral vascular networks after MRT may be essential for the improvement of such differential effects on the vasculature.
Databáze: OpenAIRE