Desarrollo de modelos predictivos de contaminantes ambientales

Autor: Enriqueta Salazar Ruiz
Přispěvatelé: ORDIERES MERE, JOAQUIN BIENVENIDO, Capuz Rizo, Salvador Fernando, Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria
Jazyk: Spanish; Castilian
Rok vydání: 2008
Předmět:
Zdroj: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
Riunet
DOI: 10.4995/Thesis/10251/2504
Popis: El desarrollo de modelos matemáticos predictivos de distinto tipos de fenómenos son aplicaciones fundamentales y útiles de las técnicas de Minería de Datos. Un buen modelo se convierte en una excelente herramienta científica que requiere de la existencia y disposición de grandes volúmenes de datos, además de habilidad y considerable tiempo aplicado del investigador para integrar los conocimientos más relevantes y característicos del fenómeno en estudio.En el caso concreto de ésta tesis, los modelos de predicción desarrollados se enfocaron en la predicción contaminantes ambientales como el valor medio de Partículas Finas (PM2.5) presentes en el aire respirable con un tiempo de anticipación de 8 horas y del Ozono Troposférico Máximo (O3) con 24 horas de anticipación. Se trabajó con un interesante conjunto de técnicas de predicción partiendo con herramientas de naturaleza paramétrica tan sencillas como Persistencia, Modelación Lineal Multivariante, así como la técnica semi-paramétrica: Regresión Ridge además de herramientas de naturaleza no paramétrica como Redes Neuronales Artificiales (ANN) como Perceptron Multicapa (MLP), Perceptrón Multi Capa Cuadrática (SMLP), Función de Base Radial (RBF) y Redes Elman, así como Máquinas de Vectores Soporte (SVM), siendo las técnicas no paramétricas las que generalizaron mejor los fenómenos modelizados.
Salazar Ruiz, E. (2008). Desarrollo de modelos predictivos de contaminantes ambientales [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/2504.
Databáze: OpenAIRE