Transmission and Antibiotic Resistance of Achromobacter in Cystic Fibrosis
Autor: | Helle Krogh Johansen, Jennifer A. Bartell, Migle Gabrielaite, Finn Cilius Nielsen, Rasmus L. Marvig, Tacjana Pressler, Niels Nørskov-Lauritsen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Microbiology (medical)
Achromobacter Antibiotic resistance Population Achromobacter ruhlandii Cystic fibrosis Microbiology Cystic Fibrosis/complications medicine Humans Genetic epidemiology Typing education Phylogeny Pathogen transmission education.field_of_study biology Transmission (medicine) PSEUDOMONAS-AERUGINOSA Cystic fibrosis airway infection Drug Resistance Microbial Achromobacter xylosoxidans Genomics biology.organism_classification medicine.disease EVOLUTION Achromobacter/genetics PREVALENCE Phylogenetics XYLOSOXIDANS INFECTIONS Gram-Negative Bacterial Infections/epidemiology |
Zdroj: | Gabrielaite, M, Bartell, J A, Nørskov-Lauritsen, N, Pressler, T, Nielsen, F C, Johansen, H K & Marviga, R L 2021, ' Transmission and Antibiotic Resistance of Achromobacter in Cystic Fibrosis ', Journal of Clinical Microbiology, vol. 59, no. 4, e02911-20 . https://doi.org/10.1128/JCM.02911-20 |
DOI: | 10.1128/JCM.02911-20 |
Popis: | Achromobacter species are increasingly being detected in patients with cystic fibrosis (CF), and this emerging pathogen is associated with antibiotic resistance and more-severe disease outcomes. Nonetheless, little is known about the extent of transmission and antibiotic resistance development in Achromobacter infections. We sequenced the genomes of 101 Achromobacter clinical isolates (identified as Achromobacter xylosoxidans based on matrix-assister laser desorption ionization–time of flight [MALDI-TOF] or API N20 typing) collected from 51 patients with CF—the largest longitudinal data set to date. We performed phylogenetic analysis on the genomes and combined this with epidemiological and antibiotic resistance data to identify patient-to-patient transmission and the development of antibiotic resistance. We confirmed that the MALDI-TOF or API N20 method was not sufficient for Achromobacter species-level typing and that the population of Achromobacter isolates was composed of five different species, among which A. xylosoxidans accounted for 52% of infections. Most patients were infected by unique Achromobacter clone types; nonetheless, suspected patient-to-patient transmission cases identified by shared clone types were observed in 35% (n = 18) of patients. In 15 of 16 cases, the suspected transmissions were further supported by genome- or clinic visit-based epidemiological analysis. Finally, we found that resistance developed over time. We show that whole-genome sequencing (WGS) is essential for Achromobacter species typing and identification of patient-to-patient transmission, which was revealed for Achromobacter ruhlandii, A. xylosoxidans, and, for the first time, Achromobacter insuavis. Furthermore, we show that the development of antibiotic resistance is associated with chronic Achromobacter infections. Our findings emphasize that transmission and antibiotic resistance should be considered in future treatment strategies. |
Databáze: | OpenAIRE |
Externí odkaz: |