Exploring Datasets to Solve Partial Differential Equations with TensorFlow
Autor: | Oscar G. Borzdynski, Florentino Borondo, Jezabel Curbelo |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
TensorFlow Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en derivades parcials [Àrees temàtiques de la UPC] Computer science Neural Network 02 engineering and technology symbols.namesake 020901 industrial engineering & automation 0202 electrical engineering electronic engineering information engineering Code (cryptography) Network architecture Partial differential equation Artificial neural network Equacions en derivades parcials business.industry Deep learning Function (mathematics) Differential equations Partial Dirichlet boundary condition symbols 020201 artificial intelligence & image processing Heat equation Partial derivative equations Artificial intelligence business 35 Partial differential equations [Classificació AMS] Algorithm Keras |
Zdroj: | Advances in Intelligent Systems and Computing ISBN: 9783030578015 SOCO UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
DOI: | 10.1007/978-3-030-57802-2_42 |
Popis: | The version of record is available online at: http://dx.doi.org/10.1007/978-3-030-57802-2_42 This paper proposes a way of approximating the solution of partial differential equations (PDE) using Deep Neural Networks (DNN) based on Keras and TensorFlow, that is capable of running on a conventional laptop, which is relatively fast for different network architectures. We analyze the performance of our method using a well known PDE, the heat equation with Dirichlet boundary conditions for a non-derivable non-continuous initial function. We have tried the use of different families of functions as training datasets as well as different time spreadings aiming at the best possible performance. The code is easily modifiable and can be adapted to solve PDE problems in more complex scenarios by changing the activation functions of the different layers. This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities, Gobierno de España, under Contracts No. PGC2018-093854-BI00, and ICMAT Severo Ochoa SEV-2015-0554, and from the People Programme (Marie Curie Actions) of the European Union’s Horizon 2020 Research and Innovation Program under Grant No. 734557. |
Databáze: | OpenAIRE |
Externí odkaz: |